Toggle light / dark theme

Quantum Breakthrough Could Make Your Devices 1,000 Times Faster

Your days of being frustrated by a sluggish smartphone or laptop could be coming to an end: scientists have discovered a new technique for controlling electronic states in quantum materials that could eventually make our gadgets up to 1,000 times faster.

Quantum materials are those that display strange behaviors and properties governed by quantum mechanics. They provide a glimpse into a separate realm of physics, where the standard laws don’t apply.

Here, researchers from institutions across the US manipulated the temperature of a layered quantum material called 1T-TaS₂, enabling it to instantly shift between two opposite electronic phases: insulation and conduction. That ability to block or allow the flow of electricity is key to how transistors in computer chips work.

Defects in single-crystal indium gallium zinc oxide could fix persistent display instability

Many displays found in smartphones and televisions rely on thin-film transistors (TFTs) made from indium gallium zinc oxide (IGZO) to control pixels. IGZO offers high transparency due to its large bandgap (the gap existing between the valence and conduction bands), high conductivity, and can operate even in an amorphous (non-crystalline) form, making it ideal for displays, flexible electronics, and solar cells.

However, IGZO-based devices face long-term stability issues, such as negative bias illumination stress, where prolonged exposure to light and electrical stress shifts the voltage required to activate pixels. These instabilities are believed to stem from structural imperfections, which create additional electronic states—known as subgap states—that trap charge carriers and disrupt current flow.

Until recently, most studies on subgap states focused on amorphous IGZO, as sufficiently large single-crystal IGZO (sc-IGZO) samples were not available for analysis. However, the disordered nature of amorphous IGZO has made it difficult to pinpoint the exact causes of electronic instability.

Google reveals details on Android’s Advanced Protection for Chrome

Google is sharing more information on how Chrome operates when Android mobile users enable Advanced Protection, highlighting strong security improvements.

The tech giant recently extended its Advanced Protection Program to the device level with the release of Android 16, aimed at offering a robust, holistic security posture for high-risk individuals likely to be targeted by sophisticated spyware attacks.

Starting Android 16, Advanced Protection can be activated from the settings, strengthening security measures across the board, including on Google apps such as Chrome, Messages, and Phone.

What It’s Like Using a Brain Implant With ChatGPT

The potential of chat gpt and neural link is limitless. Really chat gpt with agi would automate even an entire world and even do all work by itself basically taking the forever mental labor of work forever scenario away from humans so we can sit and drink tea or other leisure activities. Then if we miniaturize even chat gpt, neural link, and agi all in one whether it is in the neural link or even on a smartphone it could allow for near infinite money 💵 with little to no effort which takes away mental labor forever because we could solve anything or do all jobs with no need for even training it would be like an everything calculator for an eternity of work so no humans need suffer the dole of forever mental labor which can evolve earths civilization into complete abundance.


We spoke to two people pioneering ChatGPT’s integration with Synchron’s brain-computer-interface to learn what it’s like to use and where this technology is headed.

Read more on CNET: How This Brain Implant Is Using ChatGPT https://bit.ly/3y5lFkD

0:00 Intro.
0:25 Meet Trial Participant Mark.
0:48 What Synchron’s BCI is for.
1:25 What it’s like to use.
1:51 Why work with ChatGPT?
3:05 How Synchron’s BCI works.
3:46 Synchron’s next steps.
4:27 Final Thoughts.

Never miss a deal again! See CNET’s browser extension 👉 https://bit.ly/3lO7sOU

Wood-based material can improve safety and lifespan of lithium-ion batteries

For consumers worried about the risks associated with using lithium-ion batteries—which are used in everything from phones to laptops to electric vehicles—Michigan State University has discovered that a natural material found in wood can improve battery safety while also improving the battery’s life.

Chengcheng Fang, assistant professor in the College of Engineering, and Mojgan Nejad, an associate professor in the College of Agriculture and Natural Resources, collaborated to engineer , a natural ingredient of wood that provides support and rigidity, into a thin film separator that can be used inside to prevent short circuits that can cause a fire.

“We wanted to build a better battery,” said Fang. “But we also wanted it to be safe, efficient and sustainable.”

Mathematical approach makes uncertainty in AI quantifiable

How reliable is artificial intelligence, really? An interdisciplinary research team at TU Wien has developed a method that allows for the exact calculation of how reliably a neural network operates within a defined input domain. In other words: It is now possible to mathematically guarantee that certain types of errors will not occur—a crucial step forward for the safe use of AI in sensitive applications.

From smartphones to self-driving cars, AI systems have become an everyday part of our lives. But in applications where safety is critical, one central question arises: Can we guarantee that an AI system won’t make serious mistakes—even when its input varies slightly?

A team from TU Wien—Dr. Andrey Kofnov, Dr. Daniel Kapla, Prof. Efstathia Bura and Prof. Ezio Bartocci—bringing together experts from mathematics, statistics and computer science, has now found a way to analyze neural networks, the brains of AI systems, in such a way that the possible range of outputs can be exactly determined for a given input range—and specific errors can be ruled out with certainty.