Toggle light / dark theme

Samsung plugs IBM’s brain-imitating chip into an advanced sensor

IBM’s TrueNorth, a so-called “cognitive chip,” remarkably resembles the human brain: its 4,096 cores combine to create about a million digital neurons and 256 million synapse connections. In short, like everyone’s favorite complex organ, it operates extremely quickly and consumes far less energy than typical processors. Samsung has taken the chip and plugged it into its Dynamic Vision Sensor (DVS) to process digital imagery at a blindingly fast rate.

Typical digital cameras max out 120 frames per second, but a DVS-equipped gadget can capture an incredible 2,000 fps. Unlike a conventional sensor, each pixel on Samsung’s only reacts if it needs to report a change in what it’s seeing, according to CNET. That high speed could be useful for creating 3D maps or gesture controls. At a press event on Thursday in San Jose, the company demonstrated its ability to control a TV as it recognized hand waves and finger pinches from ten feet away.

DVS is efficient like its TrueNorth chip base, and only consumes about 300 milliwatts of power. That’s about a hundredth the drain of a laptop’s processor and a tenth of a phone’s, a Samsung VP said at the event. But we still have a ways to go before we approach the minimal power requirements of the human brain, he said, which can process some tasks at 100 million times less power than a computer.

Towards the T-1000: Liquid metals propel future electronics

Science fiction is inching closer to reality with the development of revolutionary self-propelling liquid metals—a critical step towards future elastic electronics.

While building a shape-shifting liquid metal T-1000 Terminator may still be far on the horizon, the pioneering work by researchers at RMIT University in Melbourne, Australia, is setting the foundation for moving beyond solid state electronics towards flexible and dynamically reconfigurable soft circuit systems.

Modern electronic technologies like smart phones and computers are mainly based on circuits that use solid state components, with fixed metallic tracks and semiconducting devices.

Russia Charges U.S. Tech Giant Apple With Fixing Prices For iPhones

This is interesting. Russia has gone already after Google over an anti-trust situation over Android. Now Apple. Wonder who is next? Meantime, China is refusing US tech and companies in many areas of its industry over US involvement of the S. China Sea decisions handed down by a tribunal at The Hague. And, everyone knows about the new partnership in the recent months between China and Russia. Looks like US largest GDP producer is battling on many fronts.


Russian antitrust authorities charged U.S. tech giant Apple on August 8 with fixing the retail prices for iPhones in the country.

The Federal Antimonopoly Service said its investigation “showed that from the start of official sales of iPhone 6s and iPhone 6s Plus in Russia, the majority of resellers set identical prices for them and held them for a certain period.”

It said resellers’ prices also coincide for other iPhone models. It named 16 retailers, including Russia’s Vimpelcom and Apple’s official online store, that allegedly take part in price fixing that it said was “coordinated” by the Apple group.

WEF: These are the technologies that will transform finance over the next few decades

Like this article; there is 2 more pieces missing from the roadmap for 2010 & beyond and that is Biocomputing & Singularity. Biocomputing will provide the financial industry (banks, trading firms, accounting & audit firms, bond insurers, etc.) the ability to expand information/ data storage and transmission capacities like we have never see before just look at what Microsoft, Google, Amazon, etc. have done with DNA storage. And, the much loved Singularity enables boosting of knowledge and insights as well as more mobility and access to information as they need it. BTW — Biometrics is NOT the same as Biocomputing; biocomputing goes well beyond security/ identity management.


The influential non-profit rates these technologies alongside the PC, the internet, and smartphones in terms of their potential to transform financial…

72 Stunning Things in The Future That Will be Common Ten Years From Now That Don’t Exist Today

How many things do we own, that are common today, that didn’t exist 10 years ago? The list is probably longer than you think.

Prior to the iPhone coming out in 2007, we didn’t have smartphones with mobile apps, decent phone cameras for photos/videos, mobile maps, mobile weather, or even mobile shopping.

None of the mobile apps we use today existed 10 years ago: Twitter, Facebook, Youtube, Instagram, Snapchat, Uber, Facetime, LinkedIn, Lyft, Whatsapp, Netflix, Pandora, or Pokemon Go.

Texting pedestrians exhibit “zombie-like” behaviour, say Montreal researchers

Zombies and texting.


A new study presented by researchers from the Tech3Lab at HEC Montreal, along with the University of Montreal’s Department of Psychology and the Centre hospitalier Notre-Dame has found that “Texting while walking is a widespread and dangerous behaviour.”

In a research presentation called “Mobile Multitasking Distraction: A Pilot Study with Intracranial Electroencephalography”, researchers attempted to determine which neural circuitry is implicated in the act of texting while walking, with the aim of helping to develop future methods of mitigating “this dangerous habit” and perhaps to “assist the development of mobile applications aiming directly at the neural circuitry”.

While online marketers search for ways to increase user “engagement” with smartphones, it’s precisely this engagement that puts people who walk and text at the same time at greatest risk.

Lab 2.0: Will Computers Replace Experimental Science?

We spend our lives surrounded by hi-tech materials and chemicals that make our batteries, solar cells and mobile phones work. But developing new technologies requires time-consuming, expensive and even dangerous experiments.

Luckily we now have a secret weapon that allows us to save time, money and risk by avoiding some of these experiments: computers.

Thanks to Moore’s law and a number of developments in physics, chemistry, computer science and mathematics over the past 50 years (leading to Nobel Prizes in Chemistry in 1998 and 2013) we can now carry out many experiments entirely on computers using modelling.

Chip-enhanced political candidates coming soon

My new OpEd article for the San Francisco Chronicle on chip implants and transhumanism: http://www.sfchronicle.com/opinion/openforum/article/Chip-en…694149.php They also did a 2-minute video of my presidential campaign: http://bit.ly/2aERJxc


The implant can do all sorts of things, like unlock my electronic house door, act as my password on my computer, and even send a text message when people with the right phone and app come near me. Keys, credit cards, ID cards, medical records and passwords — these are all things that can be replaced by a tiny chip in the hand. If having technology in your bodies sounds wacky, consider the millions of people around the world who have artificial hips or dentures, or deaf people who use cochlear implants to hear sounds. […] former Vice President Dick Cheney famously asked to have the Wi-Fi on his heart valve turned off, just in case terrorists tried to hack it. A company in Sylmar (Los Angeles County) called Second Sight already has FDA approval for bionic eyes.

How the most connected hospitals will use chatbots

Sure, chatbots are useful for service industries like hospitality and food delivery, but in health care? Some groups are testing the use of chatbots to retrieve medical information from within a messaging app. At first glance, that seems a bit impersonal, but a closer look reveals a wide range of use cases where bots could make your next visit to the hospital, doctor’s office, or pharmacy faster and more effective.

Let’s run this back a bit. If you’re not familiar with bots, here’s a brief explanation. Bots are software applications that run automated tasks or scripts that serve as shortcuts for completing a certain job, but they do it faster (a lot faster) and with verve. And in health care, we spend a lot of time spent generating and retrieving information.

By putting a trained army of bots inside an application — smartphone, desktop, whatever-top — health care workers can rapidly improve throughput by simply cutting out a bunch of steps. That’s something most care providers today would welcome, especially with millions of new people entering the system as a result of the Affordable Care Act and the aging of baby boomers. With the crush of increased data entry and new regulations, costs and rote work are skyrocketing.

/* */