БЛОГ

Archive for the ‘nanotechnology’ category: Page 10

Jan 30, 2024

Researchers showcase new breakthroughs for unlocking the potential of plasmonics

Posted by in categories: materials, nanotechnology

Plasmonics are special optical phenomena that are understood as interactions between light and matter and possess diverse shapes, material compositions, and symmetry-related behavior. The design of such plasmonic structures at the nanoscale level can pave the way for optical materials that respond to the orientation of light (polarization), which is not easily achievable in bulk size and existing materials.

In this regard, “shadow growth” is a technique that utilizes vacuum deposition to produce nanoparticles from a wide range of 2D and 3D shapes at nanoscale. Recent research progress in controlling this shadow effect has broadened the possibilities for the creation of different nanostructures.

Now, in twin studies led by Assistant Professor Hyeon-Ho Jeong from the Gwangju Institute of Science and Technology (GIST), Republic of Korea, researchers have comprehensively shed light on the recent advances in shadow growth techniques for hybrid plasmonic nanomaterials, including clock-inspired designs containing magnesium (Mg).

Jan 30, 2024

Light My Fire: COUR Raises $105M Series A to Advance Tolerogenic Nanoparticles for Autoimmunity

Posted by in categories: biotech/medical, nanotechnology

Steve P. Miller, PhD, has spent much of his career figuring out how to shut off autoimmune responses when he observed dying cells acting as carriers of autoantigens that could modulate the immune system. More than 20 years ago, while a professor at Northwestern University’s Feinberg School of Medicine, Miller discovered that dendritic cells (DCs), a subtype of antigen-presenting cells (APCs), could be changed or turned off to send the right signals to make immunologically tolerant T cells, also known as “tolerogenic.”

Miller’s attention turned toward investigating how best to mimic the apoptotic cells, overriding the expression of dendritic cells. So, Miller partnered with polymer chemist Lonnie D. Shea, PhD, who was at the McCormick School of Engineering, to develop a nanoparticle that interacts effectively with dendritic cells.

In 2013, Miller and Shea helped launch a company spun out of Northwestern University, when Shea was still in Chicago, called Cour Pharmaceutical Development Company, to develop innovative nanobiological therapeutics for acute inflammation, autoimmune, and allergic conditions. After years of experimentation, they developed a formula for nanoparticles of the right size and charge that interact well with the immune system, which is the foundation for their proprietary antigen-specific immune tolerance platform.

Jan 30, 2024

Researchers slow down light in metasurfaces with record low loss

Posted by in categories: materials, nanotechnology

The speed of light can be intentionally reduced in various media. Various techniques have been developed over the years to slow down light, including electromagnetically induced transparency (EIT), Bose-Einstein condensate (BEC), photonic crystals, and stimulated Brillouin scattering (SBS).

Notably, researchers from Harvard, led by Lene Vestergaard Hau, reduced light speed to 17 m/s in an ultracold atomic gas using EIT, which sparked the interest in exploring EIT analogs in metasurfaces, a transformative platform in optics and photonics.

Despite the benefits, slow-light structures face a significant challenge: Loss, which limits storage time and interaction length. This issue is particularly severe for analogs of EIT due to scattering loss of nanoparticles and sometimes absorption loss of materials.

Jan 30, 2024

Regenerative nanochip restores ANY tissue with 98% success and clinical trials start next year

Posted by in categories: biotech/medical, chemistry, engineering, life extension, nanotechnology, neuroscience

Year 2017 face_with_colon_three


Tissue Nanotransfection (TNT), that can generate any cell type of interest for treatment within the patient’s own body. This technology may be used to repair injured tissue or restore function of aging tissue, including organs, blood vessels and nerve cells.

“By using our novel nanochip technology, injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining,” said Dr. Chandan Sen, director of Ohio State’s Center for Regenerative Medicine & Cell Based Therapies, who co-led the study with L. James Lee, professor of chemical and biomolecular engineering with Ohio State’s College of Engineering in collaboration with Ohio State’s Nanoscale Science and Engineering Center.

Continue reading “Regenerative nanochip restores ANY tissue with 98% success and clinical trials start next year” »

Jan 29, 2024

New biocompatible nanotweezers enhance control over diverse nanoparticles with versatility and precision

Posted by in categories: materials, nanotechnology

Highly adaptable optothermal nanotweezers leverage thermophoresis and thermo-osmosis to trap nanoparticles as small as 3.3 nm across materials without requiring surface modifications.

Jan 29, 2024

Recovering lossless propagation: HKU physicists overcoming optical loss in polariton system with synthetic complex frequency waves

Posted by in categories: computing, nanotechnology, physics, security

A collaborative research team co-led by Professor Shuang ZHANG, the Interim Head of the Department of Physics, The University of Hong Kong (HKU), along with Professor Qing DAI from National Center for Nanoscience and Technology, China, has introduced a solution to a prevalent issue in the realm of nanophotonics – the study of light at an extremely small scale. Their findings, recently published in the prestigious academic journal Nature Materials, propose a synthetic complex frequency wave (CFW) approach to address optical loss in polariton propagation. These findings offer practical solutions such as more efficient light-based devices for faster and more compact data storage and processing in devices such as computer chips and data storage devices, and improved accuracy in sensors, imaging techniques, and security systems.

Surface plasmon polaritons and phonon polaritons offer advantages such as efficient energy storage, local field enhancement, and high sensitivities, benefitting from their ability to confine light at small scales. However, their practical applications are hindered by the issue of ohmic loss, which causes energy dissipation when interacting with natural materials.

Over the past three decades, this limitation has impeded progress in nanophotonics for sensing, superimaging, and nanophotonic circuits. Overcoming ohmic loss would significantly enhance device performance, enabling advancement in sensing technology, high-resolution imaging, and advanced nanophotonic circuits.

Jan 28, 2024

Augmenting insect olfaction performance through nano-neuromodulation

Posted by in categories: biotech/medical, chemistry, nanotechnology

Insects have been shown to have the ability to detect different chemical agents. Here, the authors present a nanomaterial-assisted neuromodulation strategy to augment the chemosensory abilities of insects via photothermal effect and on-demand neurotransmitter release from cargo-loaded nanovehicles to augment natural sensory function.

Jan 28, 2024

A ghostly quasiparticle rooted in a century-old Italian mystery could unlock quantum computing’s potential—if only it could be pinned down

Posted by in categories: nanotechnology, quantum physics, robotics/AI

Already, the graphene efforts have offered “a breath of fresh air” to the community, Alicea says. “It’s one of the most promising avenues that I’ve seen in a while.” Since leaving Microsoft, Zaletel has shifted his focus to graphene. “It’s clear that this is just where you should do it now,” he says.

But not everyone believes they will have enough control over the free-moving quasiparticles in the graphene system to scale up to an array of qubits—or that they can create big enough gaps to keep out intruders. Manipulating the quarter-charge quasiparticles in graphene is much more complicated than moving the Majoranas at the ends of nanowires, Kouwenhoven says. “It’s super interesting for physics, but for a quantum computer I don’t see it.”

Just across the parking lot from Station Q’s new office, a third kind of Majorana hunt is underway. In an unassuming black building branded Google AI Quantum, past the company rock-climbing wall and surfboard rack, a dozen or so proto–quantum computers dangle from workstations, hidden inside their chandelier-like cooling systems. Their chips contain arrays of dozens of qubits based on a more conventional technology: tiny loops of superconducting wires through which current oscillates between two electrical states. These qubits, like other standard approaches, are beset with errors, but Google researchers are hoping they can marry the Majorana’s innate error protection to their quantum chip.

Jan 27, 2024

Nanoscale Power Plants: Turning Heat Into Power With Graphene Ribbons

Posted by in categories: computing, encryption, nanotechnology, quantum physics

Quantum physicist Mickael Perrin uses graphene ribbons to build nanoscale power plants that turn waste heat from electrical equipment into electricity.

When Mickael Perrin started out on his scientific career 12 years ago, he had no way of knowing he was conducting research in an area that would be attracting wide public interest only a few years later: quantum electronics.

Continue reading “Nanoscale Power Plants: Turning Heat Into Power With Graphene Ribbons” »

Jan 27, 2024

Scientists explore DNA hacking for functional 3D nanostructures

Posted by in categories: biotech/medical, cybercrime/malcode, nanotechnology

Scientists use DNA hacking to create a variety of 3D metallic and semiconductor nanostructures for advanced technologies.

Page 10 of 272First7891011121314Last