БЛОГ

Archive for the ‘nanotechnology’ category: Page 100

Oct 27, 2021

A New Family of Electromagnetic Pulses: Skyrmions Can Fly!

Posted by in categories: information science, nanotechnology, particle physics

Topology in optics and photonics has been a hot topic since 1,890 where singularities in electromagnetic fields have been considered. The recent award of the Nobel prize for topology developments in condensed matter physics has led to renewed surge in topology in optics with most recent developments in implementing condensed matter particle-like topological structures in photonics. Recently, topological photonics, especially the topological electromagnetic pulses, hold promise for nontrivial wave-matter interactions and provide additional degrees of freedom for information and energy transfer. However, to date the topology of ultrafast transient electromagnetic pulses had been largely unexplored.

In their paper published in the journal Nature Communications, physicists in the UK and Singapore report a new family of electromagnetic pulses, the exact solutions of Maxwell’s equation with toroidal topology, in which topological complexity can be continuously controlled, namely supertoroidal topology. The electromagnetic fields in such supertoroidal pulses have skyrmionic structures as they propagate in free space with the speed of light.

Skyrmions, sophisticated topological particles originally proposed as a unified model of the nucleon by Tony Skyrme in 1,962 behave like nanoscale magnetic vortices with spectacular textures. They have been widely studied in many condensed matter systems, including chiral magnets and liquid crystals, as nontrivial excitations showing great importance for information storing and transferring. If skyrmions can fly, open up infinite possibilities for the next generation of informatics revolution.

Oct 27, 2021

Qubits for the future: YouTube documentary explores how quantum computing could promote sustainability

Posted by in categories: climatology, education, nanotechnology, quantum physics, robotics/AI, sustainability

Laura Hiscott reviews Quantum Technology | Our Sustainable Future by The Quantum Daily.

How could quantum computing help us to fix climate change? This is the question at the heart of Quantum Technology | Our Sustainable Future, a half-hour-long documentary published on YouTube in July.

Continue reading “Qubits for the future: YouTube documentary explores how quantum computing could promote sustainability” »

Oct 26, 2021

A New Tree-Based Material Gives Solid State Batteries a Safety Boost

Posted by in categories: energy, nanotechnology

Trees make everything better. Even EV batteries.

Trees provide the air we breathe, and now, in an interesting turn of events, they might also help to power our electronics. A team of researchers from Brown University and the University of Maryland developed a new material that can be used in solid-state batteries to improve the safety and power of traditional batteries by replacing the liquids typically used in lithium-ion cells, a press statement reveals.

The material in question is a kind of cellulose nanofibril, which takes the form of polymer nanotubes derived from wood. The researchers found that it could be combined with copper to produce a paper-thin material that has an ion conductivity between 10 and 100 times better than other polymer ion conductors.

Oct 23, 2021

Skyrmions can fly!

Posted by in categories: information science, nanotechnology, particle physics

Topology in optics and photonics has been a hot topic since 1,890 where singularities in electromagnetic fields have been considered. The recent award of the Nobel prize for topology developments in condensed matter physics has led to renewed surge in topology in optics with most recent developments in implementing condensed matter particle-like topological structures in photonics. Recently, topological photonics, especially the topological electromagnetic pulses, hold promise for nontrivial wave-matter interactions and provide additional degrees of freedom for information and energy transfer. However, to date the topology of ultrafast transient electromagnetic pulses had been largely unexplored.

In their paper Nat. Commun., physicists in the UK and Singapore report a new family of pulses, the exact solutions of Maxwell’s equation with toroidal topology, in which topological complexity can be continuously controlled, namely supertoroidal topology. The in such supertoroidal pulses have skyrmionic structures as they propagate in free space with the speed of light.

Skyrmions, sophisticated topological particles originally proposed as a unified model of the nucleon by Tony Skyrme in 1,962 behave like nanoscale magnetic vortices with spectacular textures. They have been widely studied in many condensed matter systems, including chiral magnets and liquid crystals, as nontrivial excitations showing great importance for information storing and transferring. If skyrmions can fly, open up infinite possibilities for the next generation of informatics revolution.

Oct 20, 2021

Alzheimer’s Mystery Solved: How Amyloid Beta Forms in Brain Nerve Cells

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Only a matter of time til we can have nanobots clearing this out.


In a major breakthrough, researchers at Massachusetts General Hospital (MGH) have discovered how amyloid beta — the neurotoxin believed to be at the root of Alzheimer’s disease (AD) — forms in axons and related structures that connect neurons in the brain, where it causes the most damage. Their findings, published in Cell Reports, could serve as a guidepost for developing new therapies to prevent the onset of this devastating neurological disease.

Among his many contributions to research on AD, Rudolph Tanzi, PhD, vice chair of Neurology and co-director of the McCance Center for Brain Health at MGH, led a team in 1986 that discovered the first Alzheimer’s disease gene, known as APP, which provides instructions for making amyloid protein precursor (APP). When this protein is cut (or cleaved) by enzymes — first, beta secretase, followed by gamma secretase — the byproduct is amyloid beta (sometimes shortened to Abeta). Large deposits of amyloid beta are believed to cause neurological destruction that results in AD. Amyloid beta formed in the brain’s axons and nerve endings causes the worst damage in AD by impairing communication between nerve cells (or neurons) in the brain. Researchers around the world have worked intensely to find ways to block the formation of amyloid beta by preventing cleavage by beta secretase and gamma secretase. However, these approaches have been hampered by safety issues.

Continue reading “Alzheimer’s Mystery Solved: How Amyloid Beta Forms in Brain Nerve Cells” »

Oct 13, 2021

Dr Volkmar Weissig, ScD, PhD — President, World Mitochondria Society — Professor — Midwestern Univ

Posted by in categories: biotech/medical, chemistry, nanotechnology

Mitochondrial disorders, nano-medicine drug delivery, and innovative therapeutic interventions — dr. volkmar weissig scd, phd — president, world mitochondria society — professor, midwestern university.


Dr. Volkmar Weissig, Sc. D., Ph.D. is a Tenured Full Professor of Pharmacology, Chair of the Department of Pharmaceutical Sciences, and Co-Director of the Nanomedicine Center of Excellence in Translational Cancer Research, at Midwestern University, Glendale, AZ, USA.

Continue reading “Dr Volkmar Weissig, ScD, PhD — President, World Mitochondria Society — Professor — Midwestern Univ” »

Oct 13, 2021

Ray Kurzweil — Immortality by 2045

Posted by in categories: bioengineering, government, life extension, nanotechnology, Ray Kurzweil, robotics/AI, singularity, virtual reality

Ray Kurzweil — Singularitarian Immortalist, Director of Engineering at Google, famous inventor, author of How to Create a Mind http://GF2045.com/speakers/.

A world-class prolific inventor and leading futurist author, “the restless genius” (Wall Street Journal) points to 2045 for the technological singularity when A.I. will surpass human intelligence in his New York Times best seller The Singularity is Near, Amazon’s #1 book in science and philosophy.

Continue reading “Ray Kurzweil — Immortality by 2045” »

Oct 12, 2021

Researchers realize quantum teleportation onto mechanical motion of silicon beams

Posted by in categories: internet, nanotechnology, particle physics, quantum physics

Quantum technology typically employs qubits (quantum bits) consisting of, for example, single electrons, photons or atoms. A group of TU Delft researchers has now demonstrated the ability to teleport an arbitrary qubit state from a single photon onto an optomechanical device—consisting of a mechanical structure comprising billions of atoms. Their breakthrough research, now published in Nature Photonics, enables real-world applications such as quantum internet repeater nodes while also allowing quantum mechanics itself to be studied in new ways.

Quantum optomechanics

The field of quantum optomechanics uses optical means to control mechanical motion in the quantum regime. The first quantum effects in microscale mechanical devices were demonstrated about ten years ago. Focused efforts have since resulted in entangled states between optomechanical devices as well as demonstrations of an optomechanical quantum memory. Now, the group of Simon Gröblacher, of the Kavli Institute of Nanoscience and the Department of Quantum Nanoscience at Delft University of Technology, in collaboration with researchers from the University of Campinas in Brazil, has shown the first successful teleportation of an arbitrary optical qubit state onto a micromechanical quantum memory.

Oct 12, 2021

A Big Bet on Nanotechnology Has Paid Off

Posted by in category: nanotechnology

The National Nanotechnology Initiative promised a lot. It has delivered more.

facebook Share on Facebook Share on Twitter Share via Email.

Oct 11, 2021

Bioinspired electromechanical nanogenerators to regulate cell activity

Posted by in categories: chemistry, nanotechnology

😳!


The extracellular matrix (ECM) including three-dimensional (3D) network and bioelectricity can profoundly influence cell development, migration, and functional expression. In a new report now published on Science Advances, Tong Li and a research team in chemistry, nanotechnology, bioelectronics and advanced materials in China, developed an electromechanical coupling bio-nanogenerator abbreviated bio-NG inspired by biophysical cues of the extracellular matrix. The device contained highly discrete piezoelectric fibers to generate piezo potential of up to millivolts to provide in situ electrical stimulation for living cells.

Page 100 of 257First979899100101102103104Last