БЛОГ

Archive for the ‘nanotechnology’ category: Page 16

Sep 20, 2023

First Light for a Next-Generation Light Source

Posted by in categories: biological, chemistry, nanotechnology, particle physics, quantum physics

X-ray free-electron lasers (XFELs) first came into existence two decades ago. They have since enabled pioneering experiments that “see” both the ultrafast and the ultrasmall. Existing devices typically generate short and intense x-ray pulses at a rate of around 100 x-ray pulses per second. But one of these facilities, the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in California, is set to eclipse this pulse rate. The LCLS Collaboration has now announced “first light” for its upgraded machine, LCLS-II. When it is fully up and running, LCLS-II is expected to fire one million pulses per second, making it the world’s most powerful x-ray laser.

The LCLS-II upgrade signifies a quantum leap in the machine’s potential for discovery, says Robert Schoenlein, the LCLS’s deputy director for science. Now, rather than “demonstration” experiments on simple, model systems, scientists will be able to explore complex, real-world systems, he adds. For example, experimenters could peer into biological systems at ambient temperatures and physiological conditions, study photochemical systems and catalysts under the conditions in which they operate, and monitor nanoscale fluctuations of the electronic and magnetic correlations thought to govern the behavior of quantum materials.

The XFEL was first proposed in 1992 to tackle the challenge of building an x-ray laser. Conventional laser schemes excite large numbers of atoms into states from which they emit light. But excited states with energies corresponding to x-ray wavelengths are too short-lived to build up a sizeable excited-state population. XFELs instead rely on electrons traveling at relativistic speed through a periodic magnetic array called an undulator. Moving in a bunch, the electrons wiggle through the undulator, emitting x-ray radiation that interacts multiple times with the bunch and becomes amplified. The result is a bright x-ray beam with laser coherence.

Sep 20, 2023

New tool measures plasma source and color of light simultaneously to improve microchip production

Posted by in categories: computing, nanotechnology

Researchers at MESA+ Institute for Nanotechnology developed a tool that can measure the size of a plasma source and the color of the light it emits simultaneously. “Measuring both at the same time enables us to further improve lithography machines for smaller, faster and improved chips.” The article is highlighted as an Editor’s pick in Optics Letters.

Lithography machines are central to the process of making the microchips that are needed for almost all our . To produce the smallest chips, these machines need precision-engineered lenses, mirrors and light sources. “Traditionally, we could only look at the amount of light produced, but to further improve the chipmaking process, we also want to study the colors of that light and the size of its source,” explains Muharrem Bayraktar, assistant professor at the XUV Optics Group.

The extreme ultraviolet light is emitted by a plasma source, produced by aiming lasers at metal droplets. With sets of special mirrors, this light is aimed at a silicon wafer to create the smallest microchips imaginable. “We want to make the plasma as small as possible. Too large and you ‘waste’ a lot of light because the mirrors cannot catch all the light,” says Bayraktar.

Sep 20, 2023

Precisely arranging nanoparticles to develop plasmonic molecules

Posted by in categories: biotech/medical, nanotechnology

In the incredibly small world of molecules, the elementary building blocks—the atoms—join together in a very regular pattern. In contrast, in the macroscopic world with its larger particles, there is much greater disorder when particles connect.

A research team at the University of Göttingen has now succeeded in achieving the same precise arrangement of atoms shown in , but using nanometer-sized particles, known as “ molecules”—combinations of nanoscale metallic structures that have unique properties. The results were published in Angewandte Chemie International Edition, which has classified the article as a “very important paper.”

There is a transition area between molecular and macroscopic levels, an in-between zone called the nanometer range, where there is often a disordered aggregation of particles. Precise arrangement of nanometer-sized structures is one of the major challenges in the ongoing miniaturization in electronics, optics and medicine.

Sep 20, 2023

Fluorescence-guided photoimmunotherapy using targeted nanotechnology and ML7710 to manage peritoneal carcinomatosis

Posted by in categories: biotech/medical, nanotechnology

Abstract of full article w/ downloadable pdf:

Fluorescence-guided intervention can bolster standard therapies by detecting and treating microscopic tumors before lethal recurrence. Tremendous progress in photoimmunotherapy and nanotechnology has been made to treat metastasis. However, many are lost in translation due to heterogeneous treatment effects. Here, we integrate three technological advances in targeted photo-activable multi-agent liposome (TPMAL), fluorescence-guided intervention, and laser endoscopy (ML7710) to improve photoimmunotherapy. TPMAL consists of a nanoliposome chemotherapy labeled with fluorophores for tracking and photosensitizer immunoconjugates for photoimmunotherapy… More.


Fluorescence-guided photoimmunotherapy using nanotechnology and ML7710 reduces heterogeneous therapy effects and tumor metastasis.

Sep 20, 2023

Drug delivery platform leverages air-filled protein nanostructures and uses sound for targeting

Posted by in categories: biotech/medical, nanotechnology

Chemotherapy as a treatment for cancer is one of the major medical success stories of the 20th century, but it’s far from perfect. Anyone who has been through chemotherapy or who has had a friend or loved one go through it will be familiar with its many side effects: hair loss, nausea, weakened immune system, and even infertility and nerve damage.

This is because drugs are toxic. They’re meant to kill cancer cells by poisoning them, but since derive from healthy cells and are substantially similar to them, it is difficult to create a drug that kills them without also harming healthy tissue.

But now a pair of Caltech research teams have created an entirely new kind of drug delivery system, one that they say may finally give doctors the ability to treat cancer in a more targeted way. The system employs drugs that are activated by —and only right where they are needed in the body.

Sep 20, 2023

Copper-infused nanocrystals boost infrared light conversion

Posted by in categories: energy, engineering, nanotechnology, sustainability

Sunlight is an inexhaustible source of energy, and utilizing sunlight to generate electricity is one of the cornerstones of renewable energy. More than 40% of the sunlight that falls on Earth is in the infrared, visible and ultraviolet spectra; however, current solar technology utilizes primarily visible and ultraviolet rays. Technology to utilize the full spectrum of solar radiation—called all-solar utilization—is still in its infancy.

A team of researchers from Hokkaido University, led by Assistant Professor Melbert Jeem and Professor Seiichi Watanabe at the Faculty of Engineering, have synthesized tungstic acid–based materials doped with copper that exhibited all-solar utilization. Their findings are published in the journal Advanced Materials.

“Currently, the near-and mid-infrared spectra of solar radiation, ranging from 800 nm to 2,500 nm, is not utilized for energy generation,” explains Jeem. “Tungstic acid is a candidate for developing nanomaterials that can potentially utilize this spectrum, as it possesses a crystal structure with defects that absorb these wavelengths.”

Sep 19, 2023

Visualizing electron flow motivates new nanoscale devices inspired by airplane wings

Posted by in categories: nanotechnology, transportation

A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed.

It has been known theoretically for about 80 years that when electrons travel around bends, they tend to up because their lines get squished locally. Until now, however, no one had measured the heat, for which imaging the flow lines is first needed.

The research team, led by Nathaniel M. Gabor at the University of California, Riverside, imaged streamlines of electric current by designing an “electrofoil,” a new type of that allows for the contortion, compression, and expansion of streamlines of electric currents in the same way airplane wings contort, compress, and expand the flow of air.

Sep 19, 2023

Light-Triggered Particles Deliver Photoimmunotherapy for Cancer

Posted by in categories: biotech/medical, chemistry, nanotechnology

More noninvasive cancer treatments are being made:

A research group from Japan Advanced Institute of Science and Technology (JAIST) developed light-activatable, liquid metal (LM) nanoparticles for cancer diagnosis and treatment via photoimmunotherapy. The LM nanoparticles can target and destroy cancer cells and can be fluorescently tagged to function as reporters to identify and eliminate tumors in vivo.

Gallium (Ga)-based LM nanoparticles are promising nanoscale materials for biomedical applications due to their physicochemical properties, including flexibility, easy surface modification, efficient photothermal conversion, and high biocompatibility.

Sep 19, 2023

Drug delivery systems for CRISPR-based genome editors

Posted by in categories: biotech/medical, genetics, nanotechnology

CRISPR-based genome editing has the potential to treat many human genetic diseases, but achieving stable, efficient and safe in vivo delivery remains a challenge. This Review assesses current delivery systems for genome editors—focusing on adeno-associated viruses and lipid nanoparticles—and highlights data from recent clinical trials. Emerging delivery systems and ongoing challenges in the field are discussed.

Sep 18, 2023

Generating biskyrmions in a rare earth magnet

Posted by in categories: nanotechnology, particle physics

Magnetic skyrmions have received much attention as promising, topologically protected quasiparticles with applications in spintronics. Skyrmions are small, swirling topological magnetic excitations with particle-like properties. Nevertheless, the lower stability of magnetic skyrmions only allow them to exist in a narrow temperature range, with low density of the particles, thus implying the need for an external magnetic field, which greatly limits their wider applications.

In a new report published in Science Advances, Yuzhu Song and a team of researchers formed high-density, spontaneous magnetic biskyrmions without a magnetic field in ferrimagnets via the thermal expansion of the lattice.

The team noted a strong connection between the atomic-scale ferrimagnetic structure and nanoscale magnetic domains in a ferrimagnet compound by using neutron powder diffraction and Lorentz transmission electron microscopy measurements.

Page 16 of 257First1314151617181920Last