БЛОГ

Archive for the ‘nanotechnology’ category: Page 205

Feb 3, 2017

Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars

Posted by in categories: chemistry, nanotechnology, particle physics, quantum physics, space travel

Graphene is known as the world’s thinnest material due to its 2-D structure, in which each sheet is only one carbon atom thick, allowing each atom to engage in a chemical reaction from two sides. Graphene flakes can have a very large proportion of edge atoms, all of which have a particular chemical reactivity. In addition, chemically active voids created by missing atoms are a surface defect of graphene sheets. These structural defects and edges play a vital role in carbon chemistry and physics, as they alter the chemical reactivity of graphene. In fact, chemical reactions have repeatedly been shown to be favoured at these defect sites.

Interstellar molecular clouds are predominantly composed of hydrogen in molecular form (H2), but also contain a small percentage of dust particles mostly in the form of carbon nanostructures, called polyaromatic hydrocarbons (PAH). These clouds are often referred to as ‘star nurseries’ as their low temperature and high density allows gravity to locally condense matter in such a way that it initiates H fusion, the nuclear reaction at the heart of each star. Graphene-based materials, prepared from the exfoliation of graphite oxide, are used as a model of interstellar carbon dust as they contain a relatively large amount of , either at their edges or on their surface. These defects are thought to sustain the Eley-Rideal chemical reaction, which recombines two H into one H2 molecule.

The observation of interstellar clouds in inhospitable regions of space, including in the direct proximity of giant stars, poses the question of the origin of the stability of hydrogen in the molecular form (H2). This question stands because the clouds are constantly being washed out by intense radiation, hence cracking the hydrogen molecules into atoms. Astrochemists suggest that the chemical mechanism responsible for the recombination of atomic H into molecular H2 is catalysed by carbon flakes in interstellar clouds. Their theories are challenged by the need for a very efficient surface chemistry scenario to explain the observed equilibrium between dissociation and recombination. They had to introduce highly reactive sites into their models so that the capture of an atomic H nearby occurs without fail.

Continue reading “Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars” »

Feb 2, 2017

Scientists build world’s tiniest hammer to bang on brain cells

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Way cool.


Feb. 2 (UPI) — Scientists at the University of California, Santa Barbara want to study the effects of various mechanical forces on individual brain cells. Until now, however, researchers didn’t have the right tools.

To study brain impacts at the nanoscale, researchers built the world’s tiniest hammer — the μHammer, or “microHammer.” The μHammer is a cellular-scale machine capable of applying a variety of mechanical forces to neural progenitor cells, brain-centric stem cells. Eventually, scientists hope to use the hammer to apply forces to neurons and neural tissue.

Continue reading “Scientists build world’s tiniest hammer to bang on brain cells” »

Feb 2, 2017

The next step in nanotechnology

Posted by in categories: computing, nanotechnology

Nearly every other year the transistors that power silicon computer chip shrink in size by half and double in performance, enabling our devices to become more mobile and accessible. But what happens when these components can’t get any smaller? George Tulevski researches the unseen and untapped world of nanomaterials. His current work: developing chemical processes to compel billions of carbon nanotubes to assemble themselves into the patterns needed to build circuits, much the same way natural organisms build intricate, diverse and elegant structures. Could they hold the secret to the next generation of computing?

TEDTalks is a daily video podcast of the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and much more.
Find closed captions and translated subtitles in many languages at http://www.ted.com/translate

Continue reading “The next step in nanotechnology” »

Feb 2, 2017

Living Forever: What it Means to Have an “Indefinite Lifespan”

Posted by in categories: biotech/medical, life extension, nanotechnology, Peter Diamandis, singularity

Can science really enable us stick around on Earth forever? Experts haven’t developed ways to make us invincible, immortal beings who are unsusceptible to physical trauma or starvation. However, studies have been going on to make aging just another preventable disease. Effectively stalling the deterioration of our bodies would then mean humans could live indefinitely.

Peter Diamandis, co-founder of San Diego-based genotype research facility Human Longevity, Inc., spoke at the Singularity University in California last September about challenging aging and the deterioration of the body. The key to unlocking an indefinite lifespan was to improve the repair mechanisms of the body, said Diamandis. His research teams consider the possibility of using stem cells or nanomachines to regenerate our bodies.

Last year, researchers from the Stanford University School of Medicine have used chromosome extensions that dramatically increased the rate of cell division, a growth mechanism of our bodies that weakens over time. The development hints at a chance to turn back the biological clock.

Continue reading “Living Forever: What it Means to Have an ‘Indefinite Lifespan’” »

Feb 1, 2017

Missouri S&T researcher works to develop nanodiamond materials

Posted by in categories: biotech/medical, chemistry, military, nanotechnology, particle physics

Nice.


When you think of diamonds, rings and anniversaries generally come to mind. But one day, the first thing that will come to mind may be bone surgery. By carefully designing modified diamonds at the nano-scale level, a Missouri University of Science and Technology researcher hopes to create multifunctional diamond-based materials for applications ranging from advanced composites to drug delivery platforms and biomedical imaging agents.

Dr. Vadym Mochalin, an associate professor of chemistry and materials science and engineering at Missouri S&T, is characterizing and modifying 5-nanometer nanodiamond particles produced from expired military grade explosives so that they can be developed to perform specific tasks. His current research studies their use as a filler in various types of composites.

Continue reading “Missouri S&T researcher works to develop nanodiamond materials” »

Feb 1, 2017

Coordinates of more than 23,000 atoms in technologically important material mapped

Posted by in categories: bioengineering, nanotechnology, particle physics, quantum physics

Nice read.


The results demonstrate that the positions of tens of thousands of atoms can be precisely identified and then fed into quantum mechanics calculations to correlate imperfections and defects with material properties at the single-atom level. This research will be published Feb 2. in the journal Nature.

Jianwei (John) Miao, a UCLA professor of physics and astronomy and a member of UCLA’s California NanoSystems Institute, led the international team in mapping the atomic-level details of the bimetallic nanoparticle, more than a trillion of which could fit within a grain of sand.

Continue reading “Coordinates of more than 23,000 atoms in technologically important material mapped” »

Feb 1, 2017

Black holes on an electronic chip

Posted by in categories: computing, cosmology, nanotechnology, quantum physics

Watch out for the black holes in those QC chips.


Eindhoven professor Rembert Duine has proposed a way to simulate black holes on an electronic chip. This makes it possible to study fundamental aspects of black holes in a laboratory on earth. Additionally, the underlying research may be useful for quantum technologies. Duine (also working at Utrecht University) and colleagues from Chile published their results today in Physical Review Letters.

“Right now, it’s purely theoretical,” says Duine, “but all the ingredients already exist. This could be happening in a lab one or two years from now.” One possibility is in the group of Physics of Nanostructures in the Department of Applied Physics. According to Duine, in these labs experiments are being done that are necessary to create this type of black holes.

Continue reading “Black holes on an electronic chip” »

Jan 29, 2017

Medical Robotics: Microrobots Could Be The Answer To Future Medicine

Posted by in categories: biotech/medical, engineering, nanotechnology, robotics/AI

I cannot wait. However, wish they would look at cancer treatment as one of the first trials.


SCIENCE

Medical Robotics: Microrobots Could Be The Answer To Future Medicine

Continue reading “Medical Robotics: Microrobots Could Be The Answer To Future Medicine” »

Jan 29, 2017

Vanishing point: the rise of the invisible computer

Posted by in categories: computing, nanotechnology, quantum physics

Yep; devices and computers will no longer be needed given the advancements that are coming in areas of Quantum, Synbio, nanotech, etc.

However, with QC crystal technology and the work done on parallel states we have some very interesting things coming in communications, entertainment/ media, etc.


The long read: For decades, computers have got smaller and more powerful, enabling huge scientific progress. But this can’t go on for ever. What happens when they stop shrinking?

Continue reading “Vanishing point: the rise of the invisible computer” »

Jan 27, 2017

Researchers uncover how brain circuit elicits hunger responses during starvation

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Could we eventually see a day where we have cell circuitry nanobot pill that eliminates hunger and obesity as replacement to gastric bypasses? Maybe.


The human body responds to starving conditions, such as famine, to promote the chance of survival. It reduces energy expenditure by stopping heat production and promotes feeding behavior. These “hunger responses” are activated by the feeling of hunger in the stomach and are controlled by neuropeptide Y (NPY) signals released by neurons in the hypothalamus. However, how NPY signaling in the hypothalamus elicits the hunger responses has remained unknown.

Sympathetic motor neurons in the medulla oblongata are responsible for heat production by brown adipose tissue (BAT). Researchers centered at Nagoya University have now tested whether the heat-producing neurons respond to the same hypothalamic NPY signals that control hunger responses. They injected NPY into the hypothalamus of rats and tested the effect on heat production. Under normal conditions, blocking inhibitory GABAergic receptors or stimulating excitatory glutamatergic receptors in the sympathetic motor neurons induced heat production in BAT. After NPY injection, stimulating glutamatergic receptors did not produce heat, but inhibiting GABAergic receptors did. The study was recently reported in Cell Metabolism.

Continue reading “Researchers uncover how brain circuit elicits hunger responses during starvation” »