БЛОГ

Archive for the ‘nanotechnology’ category: Page 220

Jul 15, 2019

Bolonkin Explores Ultimate Uploading and Technology

Posted by in categories: bioengineering, biotech/medical, nanotechnology, nuclear energy

One of the main speculations about future technology is uploading. This is where our minds are copied in exact detail from our biological physical bodies and then created in artificial bodies. Alexander Bolonkin has posited many kinds of technology over the decades. He has a recent work which is summarized here where he considers that future uploading will mean that we can then use super-technology (nanotechnology, nuclear fusion etc…) to make people into literal gods and supermen. We can use control of matter, energy and information to make what he calls the E-man. Bolonkin then indicates that uploading and creation of minds could be used for the resurrection of long-dead people. This would be where we create the very close approximation of dead people. This would be like using gene editing to turn an African Elephant into a Whooly Mammoth. The vast technological capability would let us actualize what would be a simulation into living entities.

Bolonkin’s Case for E-Man and Resurrection

Alexander Bolonkin looks at methods and possibilities for electronic resurrection of long-dead outstanding personalities. He also considers the principles and organization of the new E-society, its goals and conditions of existence.

Jul 15, 2019

Lipid Nanoparticles Deliver CRISPR/Cas9 into Organs with High Efficiency

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

Researchers at Tufts University and the Chinese Academy of Sciences have developed a new lipid nanoparticle which can deliver CRISPR/Cas9 gene editing tools into organs with high efficiency, suggesting that the system is promising for clinical applications.

The CRISPR/Cas9 system is currently being investigated as a way to treat a variety of diseases with a genetic basis, including Duchenne muscular dystrophy, Huntington’s, and sickle cell disease. While the system has significant promise, there are some issues that need to be resolved before it can be used clinically. CRISPR/Cas9 is a large complex, and it is difficult to get it inside cell nuclei where it is needed for gene editing.

Scientists have tried a variety of delivery vehicles for CRISPR/Cas, which are intended to carry the gene editing tools to their location and help them enter the cell and nucleus. These have included viruses and various types of nanoparticle. However, to date, these have suffered from low efficiency, whereby very little of the delivered agent reaches the cells or organs where it is needed.

Jul 15, 2019

Researchers develop computer model of ferrofluid motion

Posted by in categories: biotech/medical, computing, nanotechnology

Ferrofluids, with their mesmeric display of shape-shifting spikes, are a favorite exhibit in science shows. These eye-catching examples of magnetic fields in action could become even more dramatic through computational work that captures their motion.

A KAUST research team has now developed a computer model of motion that could be used to design even grander ferrofluid displays. The work is a stepping stone to using to inform the use of ferrofluids in broad range of practical applications, such as medicine, acoustics, radar-absorbing materials and nanoelectronics.

Ferrofluids were developed by NASA in the 1960s as a way to pump fuels in low gravity. They comprise nanoscale magnetic particles of iron-laden compounds suspended in a liquid. In the absence of a magnetic , ferrofluids possess a perfectly smooth surface. But when a magnet is brought close to the ferrofluid, the particles rapidly align with the magnetic field, forming the characteristic spiky appearance. If a magnetic object is placed in the ferrofluid, the spikes will even climb the object before cascading back down.

Jul 11, 2019

Electromagnetic radiation protection shields developed

Posted by in categories: education, nanotechnology, physics

The environment contains electromagnetic radiation and magnetic fields of natural and artificial origin. Even a short electromagnetic pulse is enough to knock any equipment out of operation. Candidate of Sciences (Physics and Mathematics) Aleksey Trukhanov, senior research fellow at the SUSU Nanotechnologies Research and Education Center, is studying electrolytic films to develop electromagnetic and magnetic shields capable of neutralizing this radiation.

“The issue of electromagnetic compatibility of devices is very topical today. One of the most popular methods of equipment protection used around the world is shielding—creating electromagnetic and magnetic shields. But every developer has his own design approaches and secrets, which he naturally wouldn’t share. Suffice it to say that the cost of products with and without protective shielding may differ tenfold and more,” says Trukhanov.

Normally, heavy elements are used as the material for shielding, as they efficiently absorb high-energy radiation. Bismuth is a heavy metal with high density and high number of shell electrons. This makes it analogous to such widely used materials as lead. However, in the ratio of the protection efficiency to mass-size parameters (as well as with consideration to the ecological aspect) bismuth is the best option.

Jul 8, 2019

Researchers discover semiconducting nanotubes that form spontaneously

Posted by in categories: biotech/medical, nanotechnology, quantum physics

If scientists could find a way to control the process for making semiconductor components on a nanometric scale, they could give those components unique electronic and optical properties—opening the door to a host of useful applications.

Researchers at the Laboratory of Microsystems, in EPFL’s School of Engineering, have taken an important step towards that goal with their discovery of semiconducting nanotubes that assemble automatically in solutions of metallic nanocrystals and certain ligands. The tubes have between three and six walls that are perfectly uniform and just a few atoms thick—making them the first such nanostructures of their kind.

What’s more, the nanotubes possess photoluminescent properties: they can absorb light of a specific wavelength and then send out intense light waves of a different color, much like and quantum wells. That means they can be used as in , for example, or as catalysts in photoreduction reactions, as evidenced by the removal of the colors of some organic dyes, based on the results of initial experiments. The researchers’ findings have made the cover of ACS Central Science.

Jul 3, 2019

Inhibition of HER2 on tumor cells

Posted by in categories: biotech/medical, nanotechnology

A particularly aggressive, metastasizing form of cancer, HER2-positive breast cancer, may be treated with nanoscopic particles “imprinted” with specific binding sites for the receptor molecule HER2. As reported by Chinese researchers in the journal Angewandte Chemie, the selective binding of the nanoparticles to HER2 significantly inhibits multiplication of the tumor cells.

Jul 2, 2019

Mind-Uploading: The Impending Meta-System Transition of Humanity

Posted by in categories: biological, engineering, genetics, nanotechnology, neuroscience

The most probable mainstream non-invasive way to transfer human consciousness in the intermediate future, with initial stages in the 2030s, could be the convergence of optogenetics, nanotechnologies, neuroengineering, Cloud exocortex and an array of neurotechnologies allowing to connect our wetware directly to the Cloud.

Initially, each of us will have a personal exocortex in the Cloud, the third non-biological “de-cerebral” hemisphere, which will be in constant communication with the other two biological brain hemispheres.

At some point, this “third hemisphere,” will have a threshold information content and intimate knowledge of your biology, personality and other physical world attributes in order to seamlessly integrate with your persona as a holistic entity.

Jul 2, 2019

MIT’s Nano-Magnets Can Clean Up Oil Spills

Posted by in categories: government, nanotechnology, robotics/AI, sustainability

Oil spill cleanup technology is a surprisingly innovative field—we learned as much in the wake of the BP Gulf disaster, when everyone from conservation biologists to barbers to Kevin Costner rushed to sell the government on their wild, sometimes literally hairy oil-sucking solutions. We had rubber goop that turned oil solid, massive bags of hair, and MIT’s previous entry into the cleanup fray, robotic oil-eating submarines.

But now the renowned science lab has a better idea: nano-magnets.

MIT researchers have developed a new technique for magnetically separating oil and water that could be used to clean up oil spills. They believe that, with their technique, the oil could be recovered for use, offsetting much of the cost of cleanup.

Jul 1, 2019

Nanoscale Robots Make Molecular Assembly Lines Possible

Posted by in categories: nanotechnology, robotics/AI

UK researchers develop nanoscale robots that can potentially replicate the traditional factory assembly line, except on a nanoscale.

Jun 30, 2019

2029: The Year Humanity Has Become a Race of the Immortals

Posted by in categories: biotech/medical, life extension, nanotechnology, robotics/AI

We’re now rapidly approaching a pivotal moment in the history of this planet, when through scientific discovery an intelligent species could become a race of demigods, THE RACE OF THE IMMORTALS.

It’s quite achievable now. In fact, that will probably happen in two stages: First stage — we have to extend our lifespan with ever-improving Biotechnology. Aging is declared a desease, and around 2029, with the advances in Nanotechnology and Artificial Intelligence, we will be able start to reverse aging and add more than one year every year to an average life expectancy.

So if you’re alive in 2030, chances are you’ll live to 100 and beyond. What life would be like on the other side, when you know you can live indefinitely long? Well, we’ll get used to it and adjust accordingly. We’ll merge into the Global Brain, and emerge as the Global Mind.