Toggle light / dark theme

Nanotechnology Combatting Global Warming

Superlubricity nano-structured self-assembling coating repairs surface wear, decreases emissions and increases HP and gas mileage.

Globally about 15 percent of manmade carbon dioxide comes from vehicles. In more developed countries, cars, trucks, airplanes, ships and other vehicles account for a third of emissions related to climate change. Emissions standards are fueling the lubricant additives market with innovation.

Up to 33% of fuel energy in vehicles is used to overcome friction. Tribology is the science of interacting surfaces in relative motion inclusive of friction, wear and lubrication. This is where TriboTEX, a nanotechnology startup is changing the game of friction modification and wear resilience with a lubricant additive that forms a nano-structured coating on metal alloys.

This nano-structured coating increases operating efficiency and component longevity. It is comprised of synthetic magnesium silicon hydroxide nanoparticles that self-assemble as an ultralow friction layer, 1/10 of the original friction resistance. The coating is self-repairing during operation, environmentally inert and extracts carbon from the oil. The carbon diamond-like nano-particle lowers the friction budget of the motor, improving fuel economy and emissions in parallel while increasing the power and longevity of the motor.

TriboTEX has a Kickstarter campaign that has just surpassed $100,000 in funding. The early bird round has just closed that offered the product at one half the cost of its retail. The final round offers the lubricant system self-forming coating at 75 percent and is ending shortly. The founder Dr. Pavlo Rudenko, Ph.D. is a graduate of Singularity University GSP11 program.

Groundbreaking technology rewarms large-scale animal tissues preserved at low temperatures

Great news and a very promising vector for near future innovation!


Inductive radio-frequency heating of magnetic nanoparticles embedded in tissue (red material in container) preserved at very low temperatures restored the tissue without damage (credit: Navid Manuchehrabadi et al./Science Translational Medicine)

A research team led by the University of Minnesota has discovered a way to rewarm large-scale animal heart valves and blood vessels preserved at very low (cryogenic) temperatures without damaging the tissue. The discovery could one day lead to saving millions of human lives by creating cryogenic tissue and organ banks of organs and tissues for transplantation.

The research was published March 1 in an open-access paper in Science Translational Medicine.

Researchers remotely control sequence in which 2-D sheets fold into 3D structures

Inspired by origami, North Carolina State University researchers have found a way to remotely control the order in which a two-dimensional (2-D) sheet folds itself into a three-dimensional (3D) structure.

“A longstanding challenge in the field has been finding a way to control the sequence in which a 2-D sheet will fold itself into a 3D object,” says Michael Dickey, a professor of chemical and at NC State and co-corresponding author of a paper describing the work. “And as anyone who has done origami — or folded their laundry—can tell you, the order in which you make the folds can be extremely important.”

“The sequence of folding is important in life as well as in technology,” says co-corresponding author Jan Genzer, the S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State. “On small length scales, sequential folding via molecular machinery enables DNA to pack efficiently into chromosomes and assists proteins to adopt a functional conformation. On large length scales, sequential folding via motors helps solar panels in satellites and space shuttles unfold in space. The advance of the current work is to induce materials to fold sequentially using only .”

Novel 3D manufacturing leads to highly complex, bio-like materials

Washington State University researchers have developed a unique, 3D manufacturing method that for the first time rapidly creates and precisely controls a material’s architecture from the nanoscale to centimeters. The results closely mimic the intricate architecture of natural materials like wood and bone.

They report on their work in the journal Science Advances and have filed for a patent.

The work has many high-tech engineering applications.

Big nanotechnology advance could spell end of deadly organ shortage

Frozen organs could be brought back to life safely one day with the aid of nanotechnology, a new study finds. The development could help make donated organs available for virtually everyone who needs them in the future, the researchers say.

The number of donated organs that could be transplanted into patients could increase greatly if there were a way to freeze and reheat organs without damaging the cells within them.

In the new work, scientists developed a way to safely thaw frozen tissues with the aid of nanoparticles — particles only nanometers or billionths of a meter wide. (In comparison, the average human hair is about 100,000 nanometers wide.)

Chiral superconductivity experimentally demonstrated for the first time

(Phys.org)—Scientists have found that a superconducting current flows in only one direction through a chiral nanotube, marking the first observation of the effects of chirality on superconductivity. Until now, superconductivity has only been demonstrated in achiral materials, in which the current flows in both directions equally.

The team of researchers, F. Qin et al., from Japan, the US, and Israel, have published a paper on the first observation of chiral in a recent issue of Nature Communications.

Chiral superconductivity combines two typically unrelated concepts in a single material: Chiral materials have mirror images that are not identical, similar to how left and right hands are not identical because they cannot be superimposed one on top of the other. And superconducting materials can conduct an electric current with zero resistance at very low temperatures.

Dream of energy-collecting windows is one step closer to reality

Researchers at the University of Minnesota and University of Milano-Bicocca are bringing the dream of windows that can efficiently collect solar energy one step closer to reality thanks to high tech silicon nanoparticles.

The researchers developed technology to embed the nanoparticles into what they call efficient (LSCs). These LSCs are the key element of windows that can efficiently collect solar energy. When light shines through the surface, the useful frequencies of light are trapped inside and concentrated to the edges where small solar cells can be put in place to capture the energy.

The research is published today in Nature Photonics.

Nano-sized hydrogen storage system increases efficiency

Nice.


Lawrence Livermore scientists have collaborated with an interdisciplinary team of researchers including colleagues from Sandia National Laboratories to develop an efficient hydrogen storage system that could be a boon for hydrogen powered vehicles.

Hydrogen is an excellent energy carrier, but the development of lightweight solid-state materials for compact, low-pressure storage is a huge challenge.

Complex metal hydrides are a promising class of materials, but their viability is usually limited by slow hydrogen uptake and release. Nanoconfinement—infiltrating the metal hydride within a matrix of another material such as carbon—can, in certain instances, help make this process faster by shortening diffusion pathways for hydrogen or by changing the thermodynamic stability of the material.

Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

Nice development — demonstrating that light can control product selectivity in complex chemical reactions can be performed reliably.


Atmospheric CO2 can be transformed into valuable hydrocarbons by reaction with H2, but CO is the favoured kinetic product. Here, Liu and co-workers show that plasmonic rhodium nanoparticles not only reduce the activation energy for CO2hydrogenation, but also photo-selectively produce methane.