БЛОГ

Archive for the ‘nanotechnology’ category: Page 37

Apr 24, 2024

Artificial Cells Built with Programmable Peptide-DNA Cytoskeletons

Posted by in categories: bioengineering, biotech/medical, life extension, nanotechnology

Unlike the rigid skeletons within our bodies, the skeletons within individual cells—cytoskeletons—are changeable, even fluid. And when these cytoskeletons reorganize themselves, they do more than support different cell shapes. They permit different functions.

Little wonder, then, that scientists who build artificial cells hope to create synthetic cytoskeletons that act like natural cytoskeletons. Synthetic cytoskeletons capable of supporting dynamic changes in cell shape and function could enable the development of novel drug delivery systems, diagnostic tools, and regenerative medicine applications.

Synthetic cytoskeletons have incorporated building blocks such as polymers, small molecules, carbon nanotubes, peptides, and DNA nanofilaments. Mostly DNA nanofilaments. Although they offer programmability, they can be hard to fine tune. To get around this difficulty, scientists based at UNC Chapel Hill led by Ronit Freeman, PhD, investigated the relatively unexplored possibilities offered by peptides. Specifically, the scientists engineered artificial cells using a programmable peptide–DNA nanotechnology approach.

Apr 24, 2024

Dr. Sean Kirkpatrick, Ph.D. — Science And Technology For Emerging National Security Threats

Posted by in categories: government, military, nanotechnology, physics, science, space

Science And Technology For Emerging National Security Threats — Dr. Sean Kirkpatrick, Ph.D. — Nonlinear Solutions LLC — Fmr. Director, All-domain Anomaly Resolution Office (AARO), United States Department of Defense.


Dr. Sean Kirkpatrick, Ph.D. is Owner of Nonlinear Solutions LLC., an advisory group that provides strategic scientific and intelligence consulting services, with a focus on emerging science and technology trends, to clients in both the defense and intelligence communities.

Continue reading “Dr. Sean Kirkpatrick, Ph.D. — Science And Technology For Emerging National Security Threats” »

Apr 24, 2024

Toshiba Europe And Single Quantum Partner to Provide Extended Long-Distance QKD Deployment Capability

Posted by in categories: computing, nanotechnology, quantum physics

PRESS RELEASE — Toshiba Europe Ltd. and Single Quantum B.V. have collaborated to test and validate long-distance deployments of Quantum Key Distribution (QKD) technology. Following extended validation testing of Toshiba’s QKD technology and Single Quantum’s superconducting nanowire single photon detectors (SNSPDs), both companies are pleased to announce a solution that substantially extends the transmission range for QKD deployment over fibre connections, up to and beyond 300km.

QKD uses the quantum properties of light to generate quantum secure keys that are immune to decryption by both high performance conventional and quantum computers. Toshiba’s QKD is deployed over fibre networks, either coexisting with conventional data transmissions on deployed ‘lit’ fibres, or on dedicated quantum fibres.

Toshiba’s unique QKD technology can deliver quantum secure keys in a single fibre optic link at distances of up to 150km using standard integrated semiconductor devices. Achieving longer distance QKD fibre transmission is challenging due to the attenuation of the quantum signals along the fibre length, (the optical loss of the fibre link). To provide extended QKD transmission, operators typically concatenate fibre links together with trusted nodes along the fibre route which house QKD systems that relay the secret keys.

Apr 22, 2024

Scientists grow human mini-lungs as animal alternative for nanomaterial safety testing

Posted by in category: nanotechnology

Human mini-lungs grown by University of Manchester scientists can mimic the response of animals when exposed to certain nanomaterials. The study is published in Nano Today.

Apr 20, 2024

Prof. Dr. Thomas Rademacher, MD, PhD — CEO & Co-Founder, Emergex — T-Cell Priming Immunotherapies

Posted by in categories: biotech/medical, nanotechnology

T-Cell Priming Immunotherapies To Provide Broad And Robust, Long-Term Immunity — Prof. Dr. Thomas Rademacher, MD, PhD — CEO & Co-Founder, Emergex Vaccines


Professor Dr. Thomas Rademacher, MD, PhD, is CEO and Co-Founder of Emergex (https://emergexvaccines.com/), a company that has developed a novel nanoparticle-based vaccine technology to deliver synthetic viral fragments via microneedles on a skin-adhesive patch. Emergex’s approach works on the principle of priming immune T-cells, opening the door for the development of universal vaccines against highly mutagenic viruses such as the seasonal flu and covid. T-cell priming offers a superior inoculation strategy over traditional vaccines, which rely on the body’s generation of antibodies and fail to keep up with seasonal mutations.

Continue reading “Prof. Dr. Thomas Rademacher, MD, PhD — CEO & Co-Founder, Emergex — T-Cell Priming Immunotherapies” »

Apr 20, 2024

Top Nanotechnology Expert to Lead UVA’s NanoSTAR Institute

Posted by in categories: biotech/medical, nanotechnology

Evan A. Scott, PhD, comes to UVA from Northwestern University, where he has conducted groundbreaking research into the use of tiny nanostructures to battle heart disease, cancer, glaucoma and more. Scott’s nanostructures, far too small for the eye to see, allow for the precise delivery of drugs and other therapeutics to specific inflammatory cells to benefit the body’s immune response. His research provides important answers about the fundamental processes responsible for diseases and paves the way for high-tech treatments using cleverly designed, and mind-blowingly miniscule, synthetic materials.

“We are excited to welcome Dr. Scott to head up nanoSTAR at this critical turning point in nanotechnology research at the University of Virginia,” said Melina R. Kibbe, MD, dean of the School of Medicine. “Nanotechnology has vast untapped potential to benefit patients everywhere. It is a long-standing strength for UVA and will be a foundational pillar of the Paul and Diane Manning Institute of Biotechnology.”

The Manning Institute, under construction at Fontaine Research Park, will tackle some of the greatest challenges in medicine by focusing on cutting-edge areas of research such as nanotechnology, targeted drug delivery, cellular therapies and gene therapy. NanoSTAR, with Scott at the helm, will play a key role in that nanotechnology research, and Scott will work to foster collaborations across Grounds, including among the School of Medicine, School of Engineering and Applied Science, School of Data Science and the College of Arts and Sciences, among others.

Apr 20, 2024

Researchers set new standards for nanoparticles, helping patients with MS, ALS, Parkinson’s disease

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Is it possible for nanoparticles to go through the digestive system and deliver medicine directly to the brain tissue? Researchers from Michigan State University say yes, and their latest findings are expected to benefit patients with neurodegenerative disorders like multiple sclerosis, or MS; amyotrophic lateral sclerosis, or ALS; and Parkinson’s disease, or PD.

Apr 19, 2024

Giant nanomechanical energy storage capacity in twisted single-walled carbon nanotube ropes

Posted by in categories: energy, nanotechnology

A single-walled carbon nanotube spring stores three times more mechanical energy than a lithium-ion battery, while offering wide temperature stability and posing no explosion risk.

Apr 19, 2024

Graphene’s Light-Speed Electrons Promise Revolution in Nanoscale Transistors

Posted by in categories: computing, nanotechnology, particle physics

Researchers have shown that double-layer graphene can function both as a superconductor and an insulator, a property that could revolutionize transistor technology. This dual functionality allows for the development of nanoscale transistors that are highly energy-efficient.

An international research team led by the University of Göttingen has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be “switched” on and off, which has potential for developing tiny, energy-efficient transistors – like the light switch in your house but at a nanoscale. The Massachusetts Institute of Technology (MIT), USA, and the National Institute for Materials Science (NIMS), Japan, were also involved in the research. The results were published in the scientific journal Nature Communications.

Apr 18, 2024

Charge travels like light in bilayer graphene

Posted by in categories: computing, nanotechnology, particle physics

An international research team led by the University of Göttingen has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels.

Furthermore, they have shown that the current can be “switched” on and off, which has potential for developing tiny, energy-efficient transistors – like the light switch in your house but at a nanoscale.

The Massachusetts Institute of Technology (MIT), USA, and the National Institute for Materials Science (NIMS), Japan, were also involved in the research. The results were published in Nature Communications (“Probing the tunable multi-cone band structure in Bernal bilayer graphene”).

Page 37 of 313First3435363738394041Last