БЛОГ

Archive for the ‘nanotechnology’ category: Page 74

Jul 28, 2022

Twin physically unclonable functions (PUFs) based on carbon nanotube arrays to enhance the security of communications

Posted by in categories: computing, encryption, internet, nanotechnology, security

As the amount of data stored in devices and shared over the internet continuously increases, computer scientists worldwide are trying to devise new approaches to secure communications and protect sensitive information. Some of the most well-established and valuable approaches are cryptographic techniques, which essentially encrypt (i.e., transform) data and texts exchanged between two or more parties, so that only senders and receivers can view it in its original form.

Physical unclonable functions (PUFs), devices that exploit “random imperfections” unavoidably introduced during the manufacturing of devices to give physical entities unique “fingerprints” (i.e., trust anchors). In recent years, these devices have proved to be particularly valuable for creating , which are instantly erased as soon as they are used.

Researchers at Peking University and Jihua Laboratory have recently introduced a new system to generate cryptographic primitives, consisting of two identical PUFs based on aligned carbon nanotube (CNT) arrays. This system, introduced in a paper published in Nature Electronics, could help to secure communications more reliably, overcoming some of the vulnerabilities of previously proposed PUF devices.

Jul 28, 2022

Neuroengineers hack fruit fly brain and remotely control its movements

Posted by in categories: bioengineering, cybercrime/malcode, genetics, nanotechnology, neuroscience

A research team led by Rice University neuroengineers has created wireless technology to remotely activate specific brain circuits in fruit flies in under one second.

The team – an assemblage of experts in genetic engineering, nanotechnology, and electrical engineering – used magnetic signals to activate targeted neurons that controlled the body position of freely moving fruit flies in an enclosure.

Continue reading “Neuroengineers hack fruit fly brain and remotely control its movements” »

Jul 28, 2022

A.I. Wars, The Fermi Paradox and Great Filters with David Brin

Posted by in categories: alien life, existential risks, nanotechnology, physics, robotics/AI, security

Why we need AI to compete against each other. Does a Great Filter Stop all Alien Civilizations at some point? Are we Doomed if We Find Life in Our Solar System?

David Brin is a scientist, speaker, technical consultant and world-known author. His novels have been New York Times Bestsellers, winning multiple Hugo, Nebula and other awards.
A 1998 movie, directed by Kevin Costner, was loosely based on his book The Postman.
His Ph.D in Physics from UCSD — followed a masters in optics and an undergraduate degree in astrophysics from Caltech. He was a postdoctoral fellow at the California Space Institute and the Jet Propulsion Laboratory.
Brin serves on advisory committees dealing with subjects as diverse as national defense and homeland security, astronomy and space exploration, SETI and nanotechnology, future/prediction and philanthropy. He has served since 2010 on the council of external advisers for NASA’s Innovative and Advanced Concepts group (NIAC), which supports the most inventive and potentially ground-breaking new endeavors.

Continue reading “A.I. Wars, The Fermi Paradox and Great Filters with David Brin” »

Jul 27, 2022

Extra-Stable Light Produced by Levitated Nanoparticle

Posted by in category: nanotechnology

A trapped nanoparticle interacting with a laser provides a simple way to generate squeezed light, which has an unusually low level of fluctuations.


Project Mosquito barely got underway before it hit a dead end, with potential overseas designs waiting in the wings.

Jul 25, 2022

Three Ways Nanotechnology Is Changing The Healthcare Industry

Posted by in categories: biotech/medical, computing, nanotechnology, neuroscience

Antoine Galand, Director of Technology, GraphWear

Nanotechnology was once the stuff of science fiction, but today the concept of creating devices and machines that are several thousand times smaller than the width of a human hair is a well-established fact. The rise of nanotechnology has already transformed industries ranging from consumer electronics to textile manufacturing and cosmetics by unlocking new materials and processes at the nanoscale. The device you’re reading this on, for example, is only possible because of techniques adopted in the semiconductor industry that enable us to pattern silicon and metals to create the microscopic circuits and switches that are at the heart of modern computers.

One of the most promising applications of our newfound ability to manipulate individual atoms and molecules is in healthcare, where the ability of doctors to treat disease has been hamstrung by relatively blunt “macro” solutions. The human body is a remarkably complex system where, fundamentally, nanoscale processes occurring inside cells are what determine whether we are sick or healthy. If we’re ever going to cure diseases like diabetes, cancer or Alzheimer’s, we need technologies that work at their scale. Although medical nanotechnologies are relatively new, they’re already impacting the way we diagnose, treat and prevent a broad range of diseases.

Jul 25, 2022

Shock-formed carbon materials with intergrown sp3- and sp2-bonded nanostructured units

Posted by in categories: materials, nanotechnology

Studies of dense carbon materials formed by bolide impacts or produced by laboratory compression provide key information on the high-pressure behavior of carbon and for identifying and designing unique structures for technological applications. However, a major obstacle to studying and designing these materials is an incomplete understanding of their fundamental structures. Here, we report the remarkable structural diversity of cubic/hexagonally (c/h) stacked diamond and their association with diamond-graphite nanocomposites containing sp3-/sp2-bonding patterns, i.e., diaphites, from hard carbon materials formed by shock impact of graphite in the Canyon Diablo iron meteorite. We show evidence for a range of intergrowth types and nanostructures containing unusually short (0.31 nm) graphene spacings and demonstrate that previously neglected or misinterpreted Raman bands can be associated with diaphite structures. Our study provides a structural understanding of the material known as lonsdaleite, previously described as hexagonal diamond, and extends this understanding to other natural and synthetic ultrahard carbon phases. The unique three-dimensional carbon architectures encountered in shock-formed samples can place constraints on the pressure–temperature conditions experienced during an impact and provide exceptional opportunities to engineer the properties of carbon nanocomposite materials and phase assemblages.

Jul 25, 2022

Meta-atoms act like road signs for light waves

Posted by in categories: nanotechnology, particle physics

Nonlinear dielectric nanostructures could control the flow of light in next-generation devices for information processing and communications.

Jul 24, 2022

The Nanotechnology Sci-fi Trope, Explained

Posted by in category: nanotechnology

In most sci-fi settings, the writer doesn’t have magic to work with, so unstoppable machines too small to see are often the next best thing.

Jul 23, 2022

The World’s Biggest Vertical Farm Just Opened in Dubai

Posted by in categories: business, chemistry, food, nanotechnology, solar power, sustainability

The Dubai facility has the capacity to produce over two million pounds of leafy greens annually, and will grow lettuces, arugula, mixed salad greens, and spinach.

ECO stands for Emirates Crop One; the vertical farm is a joint venture between Crop One Holdings (a Massachusetts-based vertical farming company) and Emirates Flight Catering (the catering business that serves Emirates Airlines). Greens from the vertical farm will be served onboard Emirates flights, and will also be sold in grocery stores in the UAE. Since they’re grown in a sterile environment without pesticides, herbicides, or chemicals, the greens come ready-to-eat and don’t need to be washed.

The UAE is in many ways an ideal location for vertical farming, if not a place where the technology may soon become essential. It gets an abundance of sunlight but doesn’t have much water to speak of (it was, fittingly, the field testing site for a nanoparticle technology that helps sandy soil retain water and nutrients); that means vertical farms could use energy from solar panels to grow food indoors using 95 percent less water than traditional agriculture.

Jul 22, 2022

First self-assembling DNA nanomotor runs on electricity

Posted by in categories: biotech/medical, nanotechnology

Researchers at the Technical University of Munich (TUM) have developed the world’s first electric nanomotors made of DNA. The self-assembling structures can be activated by an electric charge to spin a ratcheting rotor arm.

The tiny motor was made using a technique called DNA origami. Like its namesake papercraft, the method involves intricately folding strands of DNA into three-dimensional shapes, with past examples including virus traps, immune-evading drug delivery systems, and even microscopic Van Gogh replicas. These structures are made by carefully selecting DNA sequences that will fold and attach to each other in certain ways, so researchers can add specific strands to a solution and let the DNA objects assemble themselves.

For the new study, the team used this process to make a molecular motor out of DNA for the first time. The motor consists of a rotor arm measuring up to 500 nanometers (nm) long, which is mounted on a base about 40 nm high that’s fixed to a glass plate. Wrapped around the tip of the base, just below the rotor, is a platform with several ratcheting obstacles built into its surface, which controls the direction that the rotor can spin.

Page 74 of 257First7172737475767778Last