Toggle light / dark theme

Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky.

Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that really have increased in speed significantly. A team of laser physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now succeeded in demonstrating the first nanophotonic electron —at the same time as colleagues from Stanford University. The researchers from FAU have now published their findings in the journal Nature.

When people hear “particle accelerator,” most will probably think of the Large Hadron Collider in Geneva, the approximately 27 kilometer long ring-shaped tunnel which researchers from around the globe used to conduct research into unknown elementary particles. Such huge are the exception, however. We are more likely to encounter them in other places in our day to day lives, for example in medical imaging procedures or during radiation to treat tumors.

Link :- https://eng.unimelb.edu.au/ingenium/wearable-device-makes-me…f-a-finger


Researchers from the University of Melbourne and RMIT University have invented an experimental wearable device that generates power from a user’s bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.

Multifunctional devices normally require several materials in layers, which involves the time-consuming challenge of stacking nanomaterials with high precision. This innovation features a single nanomaterial incorporated into a stretchable casing fitted to a person’s finger. The nanomaterial enables the device to produce power simply through the user bending their finger. The super-thin material also allows the device to perform memory tasks.

The team, led by RMIT University and the University of Melbourne, in collaboration with other Australian and international institutions, made the proof-of-concept device with the rust of a low-temperature liquid metal called bismuth, which is safe and well suited for wearable applications.

A team of researchers from TU Delft, University of Illinois, and MPI Göttingen has developed a nanoscale turbine made of DNA that can rotate in both directions depending on the salt concentration in the solution. This remarkable feat of nanotechnology could pave the way for new applications in drug delivery, biomimetics, and energy harvesting.


Natural turbines using DNA origami

A turbine is a device that converts the kinetic energy of a fluid into mechanical work. These are ubiquitous in our modern world, from wind farms to jet engines. They are also essential for life, as some biological molecules act as turbines to power cellular functions, such as the ATP synthase that produces energy for cells and the bacterial flagella that propel bacteria.

A new study published in Nature Communications delves into the manipulation of atomic-scale spin transitions using an external voltage, shedding light on the practical implementation of spin control at the nanoscale for quantum computing applications.

Spin transitions at the atomic scale involve changes in the orientation of an atom’s intrinsic angular momentum or spin. In the atomic context, spin transitions are typically associated with electron behavior.

In this study, the researchers focused on using electric fields to control the spin transitions. The foundation of their research was serendipitous and driven by curiosity.

A collaborative team of researchers led by prof. Cees Dekker at TU Delft, in partnership with international colleagues, introduces a pioneering breakthrough in the world of nanomotors – the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations.

  • A 25-nanometer DNA nanoturbine, driven by water flow, spins up to 20 revolutions per second.
  • Ion-sensitive rotation offers unique applications like targeted drug delivery.
  • Approximately 2,000 years ago in ancient Rome, glass containers filled with wine, water, or possibly exotic perfumes, fell off a marketplace table, breaking into countless pieces on the ground. Over the ensuing centuries, these shards became buried under layers of dirt and debris and exposed to a continuous cycle of changes in temperature, moisture, and surrounding minerals.

    Now these tiny pieces of glass are being uncovered from construction sites and archaeological digs and reveal themselves to be something extraordinary. On their surface is a mosaic of iridescent colors of blue, green, and orange, with some displaying shimmering gold-colored mirrors.

    These beautiful glass artifacts are often set in jewelry as pendants or earrings, while larger, more complete objects are displayed in museums.

    As it lay buried for two millennia, a fragment of glass gradually acquired a nanostructured surface that reflects light like a butterfly’s wings.

    The ancient Roman city of Aquileia was situated close to Italy’s modern border with Slovenia. Over the centuries since its founding in 181 BCE, Aquileia suffered floods, earthquakes, sieges, and sackings. Little remains of this ancient city of 100,000 inhabitants, but archaeologists have uncovered relics from that early period. One such specimen is a glass shard discovered in 2012 on farmland in the outskirts of the modern city of Aquileia. The shard is striking in its coloration: an iridescent surface of deep blue and shiny gold atop a substrate of dark green. Now, after subjecting the shard to a string of chemical and physical tests, Giulia Guidetti of Tufts University, Massachusetts, and her collaborators have identified the origin of the shard’s appearance: a chemical transformation of the amorphous glass into a nanolayered material, a photonic crystal [1].

    Glassmaking was invented independently by several Bronze Age civilizations (3300 BCE to 1,200 BCE), including those of ancient Egypt and the Indus Valley. Glass beads, vessels, and figurines remained luxury items until the Romans invented the technique of glassblowing in the first century CE. As blowing technology spread, glassware became cheaper and faster to produce in a greater variety of shapes. Items manufactured in the Roman Empire included jars for cosmetics, jugs for condiments, and cups for wine.

    A new thermometer allows thermal mapping of surfaces with microscale resolution and enables studies of heat flow through materials at cryogenic temperatures.

    To study tiny systems such as microelectronic components, researchers would like to map cryogenic temperatures of structures at the nanoscale. But current techniques involve some heating that can spoil the measurements. Now a research team has demonstrated a cryogenic thermometer that provides microscale resolution and that has little effect on the temperature of the system being measured [1]. Single molecules embedded in tiny crystals are the sensors, and they have millikelvin sensitivity. The team says that the technique could be useful for a wide range of cryogenic studies of the thermal properties of surfaces having nanoscale structures.

    Understanding and controlling heat flow through materials is essential for developing a wide range of technologies. For example, researchers have begun to use two-dimensional materials, such as graphene, cooled to cryogenic temperatures, to conduct heat away from hot spots in microelectronic devices. In these materials and at these low temperatures, heat can travel long distances without dissipation, which makes these materials extremely effective heat conductors. However, the precise mechanisms for this heat transport are still poorly understood. More generally, researchers would also like to better understand other anomalous thermal properties of materials that apply at these temperatures, such as a regime where heat flows as waves.