БЛОГ

Archive for the ‘nanotechnology’ category: Page 86

Apr 21, 2022

A biological motor that consumes chiral fuel drives rotation in one direction around a single covalent bond

Posted by in categories: biological, chemistry, internet, nanotechnology, particle physics

Bart Blommaertsif it helps. But don’t cut internet cables with that thing!!

Andreas StürmerFinally. Is it going to be a rail or car tunnel?

Eric KlienAdmin.

Continue reading “A biological motor that consumes chiral fuel drives rotation in one direction around a single covalent bond” »

Apr 20, 2022

Molecular robots that work cooperatively in swarms

Posted by in categories: biological, nanotechnology, robotics/AI

In a global first, scientists have demonstrated that molecular robots are able to accomplish cargo delivery by employing a strategy of swarming, achieving a transport efficiency five times greater than that of single robots.

Swarm robotics is a new discipline, inspired by the cooperative behavior of living organisms, that focuses on the fabrication of robots and their utilization in to accomplish complex tasks. A swarm is an orderly collective behavior of multiple individuals. Macro-scale swarm robots have been developed and employed for a variety of applications, such as transporting and accumulating cargo, forming shapes, and building complex structures.

A team of researchers, led by Dr. Mousumi Akter and Associate Professor Akira Kakugo from the Faculty of Science at Hokkaido University, has succeeded in developing the world’s first working micro-sized machines utilizing the advantages of swarming. The findings were published in the journal Science Robotics. The team included Assistant Professor Daisuke Inoue, Kyushu University; Professor Henry Hess, Columbia University; Professor Hiroyuki Asanuma, Nagoya University; and Professor Akinori Kuzuya, Kansai University.

Apr 18, 2022

Scientists develop new computational approach to reduce noise in X-ray data

Posted by in categories: computing, nanotechnology

Scientists from the National Synchrotron Light Source II (NSLS-II) and Computational Science Initiative (CSI) at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have helped to solve a common problem in synchrotron X-ray experiments: reducing the noise, or meaningless information, present in data. Their work aims to improve the efficiency and accuracy of X-ray studies at NSLS-II, with the goal of enhancing scientists’ overall research experience at the facility.

NSLS-II, a DOE Office of Science user facility, produces X-ray beams for the study of a huge variety of samples, from potential new battery materials to plants that can remediate contaminated soil. Researchers from across the nation and around the globe come to NSLS-II to investigate their samples using X-rays, collecting huge amounts of data in the process. One of the many X-ray techniques available at NSLS-II to visiting researchers is X-ray photon correlation spectroscopy (XPCS). XPCS is typically used to study material behaviors that are time-dependent and take place at the nanoscale and below, such as the dynamics between and within structural features, like tiny grains. XPCS has been used, for example, to study magnetism in advanced computing materials and structural changes in polymers (plastics).

While XPCS is a powerful technique for gathering information, the quality of the data collected and range of materials that can be studied is limited by the “flux” of the XPCS X-ray beam. Flux is a measure of the number of X-rays passing through a given area at a point in time, and high flux can lead to too much “noise” in the data, masking the signal the scientists are seeking. Efforts to reduce this noise have been successful for certain experimental setups. But for some types of XPCS experiments, achieving a more reasonable signal-to-noise ratio is a big challenge.

Apr 16, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies

Posted by in categories: biotech/medical, nanotechnology

Nature may abhor a vacuum, but it sure loves structure. Complex, self-organized assemblies are found throughout the natural world, from double-helix DNA molecules to the photonic crystals that make butterfly wings so colorful and iridescent.

A Cornell-led project has created synthetic nanoclusters that can mimic this hierarchical self-assembly all the way from the nanometer to the centimeter scale, spanning seven orders of magnitude. The resulting synthetic thin films have the potential to serve as a model system for exploring biomimetic hierarchical systems and future advanced functions.

This image shows synthetic nanoparticles as they self-organize into filaments, then twist into cables, then bundle together into highly ordered bands, ultimately resulting in a thin film that is patterned at centimeter scales. (Image courtesy of the researchers)

Apr 16, 2022

Imagine — Worldbuilding Edition

Posted by in categories: life extension, media & arts, nanotechnology, robotics/AI

This video was produced on April 15, 2022 for the Future of Life Insititute’s Worldbuilding program.

Please support the Future of Life Institute: https://futureoflife.org.

Continue reading “Imagine — Worldbuilding Edition” »

Apr 13, 2022

Rotating blue laser light reveals unimagined dynamics in living cells

Posted by in categories: biotech/medical, nanotechnology

When cities transform into a colorful world of lights as darkness falls, it’s often only possible to estimate their contours, which depending on the perspective can draw the attention to key details or trivia. In fluorescence microscopy, biological cells are marked with fluorescent dyes and excited to luminesce in specific areas by optical switches– like a city at night. However, this light is usually too faint for small, rapid objects, or even goes out after a while. This is known as fluorescence bleaching.

Now, a new approach developed by Prof. Dr. Alexander Rohrbach and his team in the Laboratory for Bio-and Nano-Photonics at the University of Freiburg has found a way to make the smallest objects clearly visible without fluorescence. In this way, cellular structures or virus-sized particles can be observed 100 to 1,000 times longer, ten to 100-times faster and with almost doubled resolution than with . While fluorescence microscopy records what you might call “night-time images” of structures, ROCS microscopy takes “day-time images”—opposites that can complement each other excellently. Rohrbach and his colleagues describe various applications of the technology in the latest issue of Nature Communications.

Apr 12, 2022

World’s first LED lights developed from rice husks

Posted by in categories: chemistry, computing, engineering, food, nanotechnology, quantum physics, sustainability

Milling rice to separate the grain from the husks produces about 100 million tons of rice husk waste globally each year. Scientists searching for a scalable method to fabricate quantum dots have developed a way to recycle rice husks to create the first silicon quantum dot (QD) LED light. Their new method transforms agricultural waste into state-of-the-art light-emitting diodes in a low-cost, environmentally friendly way.

The research team from the Natural Science Center for Basic Research and Development, Hiroshima University, published their findings on January 28, 2022, in the American Chemical Society journal ACS Sustainable Chemistry & Engineering.

“Since typical QDs often involve toxic material, such as cadmium, lead, or other , have been frequently deliberated when using nanomaterials. Our proposed process and for QDs minimizes these concerns,” said Ken-ichi Saitow, lead study author and a professor of chemistry at Hiroshima University.

Apr 12, 2022

New nanotechnology bubbles could speed up pharma development

Posted by in categories: biotech/medical, nanotechnology

A new technique for synthesising and screening molecules developed by Danish researchers has been described in a paper published in Nature Chemistry.

The technique, dubbed “single particle combinatorial lipidic nanocontainer fusion based on DNA-mediated fusion” or SPARCLD, uses tiny soap-like “bubbles” to produce more than 40,000 different molecules on an area the size of a pinhead.

The bubbles form “nano-containers” inside which molecules can be produced using DNA nanotechnology. About 42,000 nano-containers can fit on one square millimetre.

Apr 11, 2022

Optical vortex crystals for photonic simulations of complex systems

Posted by in categories: climatology, nanotechnology, space

The system developed in Milano is robust and it also has the potential to process information encoded in different coupled systems, including far and enormous galaxies. Thanks to these new results, it is now possible to simulate in the lab complex coupled systems, with order altered by stable defects, difficult to be reproduced otherwise since involving ginormous scale, like galaxies, or part of extreme hydrodynamic systems.


Water whirlpools, smoke rings, violent tornados and spiral galaxies are all examples of twists in fluids, although very different each other. Analogous twists, but in the realm of light, have been created by the research group coordinated by Antonio Ambrosio at the IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology), in Milano (Italy). The results, published in the journal Nature Photonics, show the realization of 100 light vortices, coupled to form an ordered structure, a light crystal.

Mutual interaction of light and nanostructured materials is the focus of the research of Antonio Ambrosio, Principal Investigator of the research line Vectorial Nano-imaging at IIT in Milano and grantee of the ERC Consolidator project “METAmorphoses.”

Continue reading “Optical vortex crystals for photonic simulations of complex systems” »

Apr 11, 2022

No small measure: Probing the mechanics of gold contacts at the nanoscale

Posted by in categories: nanotechnology, particle physics, quantum physics

Miniaturization lies at the heart of countless technological advances. It is undeniable that as devices and their building blocks get smaller, we manage to unlock new functionalities and come up with unprecedented applications. However, with more and more scientists delving into materials with structures on the atomic scale, the gaps in our current understanding of nanomaterial physics are becoming more prominent.

For instance, the nanomaterial’s surface represents one such knowledge gap. This is because the influence of surface quantum effects becomes much more apparent when the surface-to-volume ratio of a material is high. In nanoelectromechanical systems (NEMS), a current hot topic in research, the physical properties of the nanomaterials greatly differ from their bulk counterparts when their size is reduced to a few atoms. A solid understanding of the mechanical properties of nanowires and nanocontacts—integral components of NEMS—is essential for advancing this technology. But, measuring them has proven a challenging task.

Against this backdrop, a research team from Japan recently achieved an unprecedented feat when they managed to precisely measure the elastic modulus of gold nanocontacts stretched down to a few atoms. The study, published in Physical Review Letters, was led by Prof. Yoshifumi Oshima of Japan Advanced Institute of Science and Technology (JAIST). The rest of the team included post-doctoral research fellow Jiaqi Zhang and Professor Masahiko Tomitori from JAIST, and Professor Toyoko Arai of Kanazawa University.

Page 86 of 257First8384858687888990Last