БЛОГ

Archive for the ‘neuroscience’ category: Page 17

Sep 22, 2024

Research cracks the Autism Code, making the Neurodivergent Brain Visible

Posted by in categories: biotech/medical, genetics, mathematics, neuroscience

Model grounded in biology reveals the tissue structures linked to the disorder. A researcher’s mathematical modeling approach for brain imaging analysis reveals links between genes, brain structure and autism.

A multi-university research team co-led by University of Virginia engineering professor Gustavo K. Rohde has developed a system that can spot genetic markers of autism in brain images with 89 to 95% accuracy.

Their findings suggest doctors may one day see, classify and treat autism and related neurological conditions with this method, without having to rely on, or wait for, behavioral cues. And that means this truly personalized medicine could result in earlier interventions.

Sep 21, 2024

New brain organoid model replicates human cortical domains

Posted by in categories: biotech/medical, neuroscience

The group of Jürgen Knoblich at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences, has developed a new method that allows scientists to cultivate brain organoids with distinct cortical areas and front-to-back patterning.

Together with collaborators at the Human Technopole and the University of Milan-Bicocca, they report a method that gives scientists a deeper look into human-specific brain development and disorders. The study was published in Nature Methods on September 18.

Brain organoids are extensively used to study development. Derived from , the 3D models allow scientists to study unique properties of the human brain. Researchers use cortical organoids to answer fundamental questions such as how the human brain can grow to its large size or how the human brain’s long-range connections form.

Sep 21, 2024

Is the brain a quantum computer?

Posted by in categories: computing, neuroscience, quantum physics

A summary of an argumentative paper by Litt, Eliasmith, Kroon, Weinstein and Thagard.

Sep 21, 2024

H+ Magazine: Randal Koene on Whole Brain Emulation

Posted by in categories: cyborgs, genetics, mapping, neuroscience

Randal Koene discusses Whole Brain Emulation on the H+ Magazine podcast. He touches on the subjects of connectomics, neural mapping, optogenetics, and neural prosthesis.

Sep 21, 2024

Sex-biased neural encoding of threat discrimination in nucleus accumbens afferents drives suppression of reward behavior

Posted by in categories: neuroscience, sex

Muir et al. explore threat discrimination in male and female mice and find that, despite similar behavioral acquisition, there are surprising sex differences in the neural encoding that drives suppression of reward seeking under threat.

Sep 21, 2024

Single-nucleus transcriptomic profiling of human orbitofrontal cortex reveals convergent effects of aging and psychiatric disease

Posted by in categories: biotech/medical, life extension, neuroscience

Single-cell profiling in the human cortex reveals aging-associated transcriptomic changes across all brain cell types, which overlap with effects with Alzheimer’s disease and show a convergent signature with psychopathology across multiple cell types.

Sep 21, 2024

‘Brain-breaking’ glass bricks are 3D printed, reusable, and strong

Posted by in categories: materials, neuroscience

Using a 3D printer that works with molten glass, researchers forged LEGO-like glass bricks with a strength comparable to concrete. The bricks could have a role in circular construction in which materials are used over and over again.

“Glass as a structural material kind of breaks people’s brains a little bit,” says Michael Stern, a former MIT graduate student and researcher in both MIT’s Media Lab and Lincoln Laboratory. “We’re showing this is an opportunity to push the limits of what’s been done in architecture.”

Continue reading “‘Brain-breaking’ glass bricks are 3D printed, reusable, and strong” »

Sep 21, 2024

Recharging mitochondria—nanoflowers offer a new way to simulate energy production to improve aging ailments

Posted by in categories: biotech/medical, life extension, nanotechnology, neuroscience

While current treatments for ailments related to aging and diseases like type 2 diabetes, Alzheimer’s, and Parkinson’s focus on managing symptoms, Texas A&M researchers have taken a new approach to fight the battle at the source: recharging mitochondrial power through nanotechnology.

Led by Dr…


When we need to recharge, we might take a vacation or relax at the spa. But what if we could recharge at the cellular level, fighting against aging and disease with the microscopic building blocks that make up the human body?

Sep 21, 2024

Recharging the powerhouse of the cell

Posted by in categories: biotech/medical, life extension, nanotechnology, neuroscience

When we need to recharge, we might take a vacation or relax at the spa. But what if we could recharge at the cellular level, fighting against aging and disease with the microscopic building blocks that make up the human body?

The ability to recharge cells diminishes as humans age or face diseases. Mitochondria, often called the powerhouse of the cell, are central to energy production. When mitochondrial function declines, it leads to fatigue, tissue degeneration, and accelerated aging. Activities that once required minimal recovery now take far longer, highlighting the role that these organelles play in maintaining vitality and overall health.

While current treatments for ailments related to aging and diseases like type 2 diabetes, Alzheimer’s, and Parkinson’s focus on managing symptoms, Texas A&M researchers have taken a new approach to fight the battle at the source: recharging mitochondrial power through nanotechnology.

Sep 21, 2024

Spiking Neural Networks and Their Applications: A Review

Posted by in categories: biological, drones, neuroscience, robotics/AI

The past decade has witnessed the great success of deep neural networks in various domains. However, deep neural networks are very resource-intensive in terms of energy consumption, data requirements, and high computational costs. With the recent increasing need for the autonomy of machines in the real world, e.g., self-driving vehicles, drones, and collaborative robots, exploitation of deep neural networks in those applications has been actively investigated. In those applications, energy and computational efficiencies are especially important because of the need for real-time responses and the limited energy supply. A promising solution to these previously infeasible applications has recently been given by biologically plausible spiking neural networks. Spiking neural networks aim to bridge the gap between neuroscience and machine learning, using biologically realistic models of neurons to carry out the computation. Due to their functional similarity to the biological neural network, spiking neural networks can embrace the sparsity found in biology and are highly compatible with temporal code. Our contributions in this work are: (i) we give a comprehensive review of theories of biological neurons; (ii) we present various existing spike-based neuron models, which have been studied in neuroscience; (iii) we detail synapse models; (iv) we provide a review of artificial neural networks; (v) we provide detailed guidance on how to train spike-based neuron models; (vi) we revise available spike-based neuron frameworks that have been developed to support implementing spiking neural networks; (vii) finally, we cover existing spiking neural network applications in computer vision and robotics domains. The paper concludes with discussions of future perspectives.

Keywords: spiking neural networks, biological neural network, autonomous robot, robotics, computer vision, neuromorphic hardware, toolkits, survey, review.

Page 17 of 998First1415161718192021Last