Toggle light / dark theme

Scientists Identify the Evolutionary “Purpose” of Consciousness

Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet serve similar purposes.

New research examines why consciousness evolved by comparing humans with birds.

What evolutionary purpose does consciousness serve, and what insights can birds offer about its origins? These questions are at the heart of two new studies from researchers at Ruhr University Bochum.

Quantifying cerebrospinal fluid dynamics: A review of human neuroimaging contributions to CSF physiology and neurodegenerative disease

The accompanying diagram presents a comprehensive anatomical overview of the human brain, integrating both lateral surface morphology and a midsagittal section to illustrate the spatial organization of cortical and subcortical structures. Major gyri, sulci, and lobar divisions are delineated alongside deep nuclei, commissural pathways, and the ventricular system. The transparent rendering of the ventricles highlights their relationship to surrounding neural tissue and emphasizes the topology of cerebrospinal fluid pathways. This visualization serves as a structural reference point for understanding functional domains such as sensorimotor processing, higher-order cognition, limbic integration, and autonomic regulation. Collectively, the diagram provides a detailed framework for interpreting neuroanatomical connectivity and its relevance to neural function.

#study:

Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics: https://www.annualreviews.org/content/journals/10.1146/annur…#45;034321

CSF dynamics throughout the ventricular system using 4D flow MRI: associations to arterial pulsatility, ventricular volumes, and age: https://link.springer.com/article/10.1186/s12987-024-00570-4

Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior: https://pubmed.ncbi.nlm.nih.gov/38665307/?utm_source=chatgpt.com.

Brain ventricles as windows into brain development and disease: https://www.sciencedirect.com/science/article/pii/S089662732…hatgpt.com


Scientists Discover Speech Trait That Foreshadows Cognitive Decline

Early signs of Alzheimer’s disease may be hidden in the way a person speaks, but it’s not yet clear which details of our diction are most critical for diagnosis.

A study from 2023 suggests that as we age, how we say something may matter more than what we say. Researchers at the University of Toronto think the pace of everyday speech may be a better indicator of cognitive decline than difficulty finding a word.

“Our results indicate that changes in general talking speed may reflect changes in the brain,” said cognitive neuroscientist Jed Meltzer when the research was published.

X-ray imaging captures the brain’s intricate connections

An international team of researchers led by the Francis Crick Institute, working with the Paul Scherrer Institute, has developed a new imaging protocol to capture mouse brain cell connections in precise detail. In work published in Nature Methods, they combined the use of X-rays with radiation-resistant materials sourced from the aerospace industry.

The images acquired using this technique allowed the team to see how nerve cells connect in the mouse brain, without needing to thinly slice biological tissue samples.

Volume electron microscopy (volume EM) has been the gold standard for imaging how nerve cells connect as ‘“circuitry” inside the brain. It has paved the way for scientists to create maps called connectomes, of entire brains, first in fruit fly larvae and then the adult fruit fly. This imaging involves cutting 10s of nm thin slices (tens of thousands per mm of tissue), imaging each slice and then building the images back into their 3D structure.

How the brain decides what to remember: Study reveals sequentially operating molecular ‘timers’

Every day, our brains transform quick impressions, flashes of inspiration, and painful moments into enduring memories that underpin our sense of self and inform how we navigate the world. But how does the brain decide which bits of information are worth keeping—and how long to hold on?

Now, new research demonstrates that long-term memory is formed by a cascade of molecular “timers” unfolding across brain regions. With a virtual reality-based behavioral model in mice, the scientists discovered that long-term memory is orchestrated by key regulators that either promote memories into progressively more lasting forms or demote them until they are forgotten.

The findings, published in Nature, highlight the roles of multiple brain regions in gradually reorganizing memories into more enduring forms, with gates along the way to assess salience and promote durability.

Brain’s GPS hasn’t changed in millions of years: Specialized neurons may be vital to evolutionary survival

The same brain cells linked to disorientation in Alzheimer’s disease have been preserved—and even slightly increased—across millions of years of evolution.

A new University of Michigan study suggests these neurons are vital to evolutionary survival. Nature has guarded and amplified them through countless generations, helping mammals instinctively know where they are in their environments. The research is published in The Journal of Neuroscience.

Schizophrenia-spectrum disorders may originate in specific brain regions that show early structural damage

Researchers at the University of Seville have identified the possible origins of structural damage in the brains of patients with schizophrenia spectrum disorders (SSDs). These are regions that show the greatest morphological alterations in the early stages of the disease compared to neurotypical people of the same sex and age. The study also found that people with SSD have significant reductions in structural similarity between different regions of the temporal, cingulate and insular lobes.

The research is published in the journal Nature Communications.

Your Brain Goes Through 5 Distinct Epochs, Massive Study Finds

The human brain is not a hard-wired machine but a malleable organ that is regularly re-shaping itself.

Neuroscientists at the University of Cambridge in the UK and the University of Pittsburgh in the US have now identified four major turning points in brain wiring between birth and death.

Like chapters of our lives, each of these neurological ‘epochs’ marks a new era of development or decline.

/* */