Toggle light / dark theme

Scientists Propose New Method To Detect Consciousness in Infants

Academics are proposing a new and improved way to help researchers discover when consciousness emerges in human infancy.

When over the course of development do humans become conscious? When the seventeenth-century French philosopher René Descartes was asked about infant consciousness by his critics, he eventually suggested that infants might have thoughts, albeit ones that are simpler than those of adults. Hundreds of years later, the issue of when human beings become conscious is a question which remains a challenge for psychologists and philosophers alike.

But now, in response to a recent article in Trends in Cognitive Sciences, two academics from the University of Birmingham have suggested an improved way to help scientists and researchers identify when babies become conscious.

The potential of ultrasound and antibodies for Alzheimer’s disease therapy

Professor Jürgen Götz and Dr Pranesh Padmanabhan from the Queensland Brain Institute comment on the successful human trial by the WVU Rockefeller Neuroscience Institute which found a five-fold reduction of amyloid-β in Alzheimer’s patients.

The latest trial results underscore the safety of using…


The potentially powerful combination of ultrasound and antibodies for the treatment of Alzheimer’s disease is the focus of a News & Views article by UQ’s Queensland Brain Institute (QBI) researchers.

QBI Professor Jürgen Götz and his team aim to develop low-intensity ultrasound into a treatment modality for Alzheimer’s disease.

Ultrasound can be used with microbubbles to achieve blood-brain barrier opening for drug delivery, or it can be used without bubbles to modulate brain function.

World first supercomputer capable of brain-scale simulation being built at Western Sydney University

😗😁😘 year 2023.


The world’s first supercomputer capable of simulating networks at the scale of the human brain has been announced by researchers at the International Centre for Neuromorphic Systems (ICNS) at Western Sydney University.

DeepSouth uses a neuromorphic system which mimics biological processes, using hardware to efficiently emulate large networks of spiking neurons at 228 trillion synaptic operations per second — rivalling the estimated rate of operations in the human brain.

ICNS Director, Professor André van Schaik says DeepSouth stands apart from other supercomputers as it is purpose-built to operate like networks of neurons, requiring less power and enabling greater efficiencies. This contrasts with supercomputers optimised for more traditional computing loads, which are power hungry.

Mental health chatbots effective in treating depression symptoms: NTU study

Mental health chatbots can help treat symptoms of depression, according to findings from an NTU research team. These apps can interact with people to show empathy and encouragement, to improve moods. CNA spoke to Dr Laura Martinengo, Research Fellow at Lee Kong Chian School of Medicine at NTU.

Follow us:
CNA: https://cna.asia.
CNA Lifestyle: http://www.cnalifestyle.com.
Facebook: / channelnewsasia.
Instagram: / channelnewsasia.
Twitter: / channelnewsasia.
TikTok: / channelnewsasia.

Team develops Fluid Biomarker for Early Detection of Amyotrophic Lateral Sclerosis, ALS and Frontotemporal Dementia

Two progressively degenerative diseases, amyotrophic lateral sclerosis (ALS, commonly known as Lou Gehrig’s disease) and frontotemporal dementia (FTD, recently in the news with the diagnoses of actor Bruce Willis and talk show host Wendy Williams), are linked by more than the fact that they both damage nerve cells critical to normal functioning—the former affecting nerves in the brain and spinal cord leading to loss of movement, the latter eroding the brain regions controlling personality, behavior and language.

Research studies have repeatedly shown that in patients with ALS or FTD, the function of TAR DNA-binding protein 43, more commonly called TDP-43, becomes corrupted. When this happens, pieces of the genetic material called ribonucleic acid (RNA) can no longer be properly spliced together to form the coded instructions needed to direct the manufacture of other proteins required for healthy nerve growth and function.

The RNA strands become riddled with erroneous code sequences called “cryptic exons” that instead affect proteins believed to be associated with increased risk for ALS and FTD development.

Memories are made by breaking DNA — and fixing it

When a long-term memory forms, some brain cells experience a rush of electrical activity so strong that it snaps their DNA. Then, an inflammatory response kicks in, repairing this damage and helping to cement the memory, a study in mice shows. The findings, published on 27 March in Nature1, are “extremely exciting”, says Li-Huei Tsai, a neurobiologist at the Massachusetts Institute of Technology in Cambridge who was not involved in the work. They contribute to the picture that forming memories is a “risky business”, she says. Normally, breaks in both strands of the double helix DNA molecule are associated with diseases including cancer. But in this case, the DNA damage-and-repair cycle offers one explanation for how memories might form and last.

It also suggests a tantalizing possibility: this cycle might be faulty in people with neurodegenerative diseases such as Alzheimer’s, causing a build-up of errors in a neuron’s DNA, says study co-author Jelena Radulovic, a neuroscientist at the Albert Einstein College of Medicine in New York City.

New Alzheimer’s treatment slows disease with nanoparticles

Alzheimer’s is the most common form of dementia, affecting an estimated 6.7 million people in the US. Researchers seeking an effective treatment for the affliction have, over the last 30 years, focused their efforts on a protein known as amyloid beta (A-beta), which form clumps in the brain.

These clumps of A-beta proteins attack nerve cells, resulting initially in short-term memory impairment and later in the loss of judgment, language and thought processes.

Other researchers have previously developed an antibody which can identify and attach itself to A-beta proteins and delay the progression of Alzheimer’s in patients with early-to-mild cognitive impairment by up to 36%.

/* */