Toggle light / dark theme

Mental Time Travel: Scientists Explore the Mysteries of Autobiographical Hypermnesia

Researchers examined a girl with exceptional memory recall. Her case could transform understanding of how we relive the past and imagine the future. Autobiographical memory is the ability to recall personal experiences that have shaped us since childhood. It includes both emotional and sensory re

Autism’s High Prevalence Could Be an Evolutionary Trade-Off

Autism-linked genes evolved rapidly in humans. They may have aided brain growth and language. A recent study published in Molecular Biology and Evolution by Oxford University Press suggests that the relatively high prevalence of Autism Spectrum Disorders in humans may be rooted in evolutionary hi

Stem cell models show epilepsy genes disrupt different brain regions

Using patient-derived induced pluripotent stem cells, the researchers generated advanced models known as 3D assembloids of two key brain areas: the cortex, which is essential for movement and higher-order thinking, and the hippocampus, which supports learning and memory. The results revealed strikingly different effects depending on the brain region.

In cortical models, the SCN8A variants made neurons hyperactive, mimicking seizure activity. In hippocampal models, however, the variants disrupted the brain rhythms associated with learning and memory. This disruption stemmed from a selective loss of specific hippocampal inhibitory neurons — the brain’s traffic cops that regulate neural activity.

These findings may help explain why patients with epilepsy often struggle with symptoms beyond seizures.

To confirm their findings, the researchers compared brain recordings from people with epilepsy to stem cell-derived hippocampal assembloids. They looked at seizure-prone regions of the patients’ hippocampi as well as regions unaffected by seizures. Abnormal brain rhythms appeared in both the patients’ seizure “hot spots” and in assembloids carrying SCN8A variants. In contrast, seizure-free brain regions and assembloids without the variants showed normal activity.


For families of children with severe epilepsy, controlling seizures is often just the beginning of their challenges. Even in cases where powerful medications can reduce seizures, many children continue to face difficulties with learning, behavior and sleep that can be just as disruptive to daily life.

New stem cell-based research published in Cell Reports, provides an early step toward understanding why current treatments often fall short, pointing to the distinct effects that single disease-causing gene variants can have across different regions of the brain.

Stem Cells Repair Brain Damage Caused by Stroke in Mice

Brain damage caused by blocked blood vessels may be treatable using injections of stem cells, according to a new study by researchers from the University of Zurich and the University of Southern California.

The results could one day help patients who have experienced some forms of stroke recover lost functions.

Using mice with stroke-induced brain damage, the researchers found that injections of human stem cells could successfully develop into immature brain cells. The results were dramatic: most of the implanted cells remained in place, developing features of fully functioning neurons and communicating with surrounding cells.

Impact of sleep duration on executive function and brain structure

Tai et al. examine sleep, cognitive and brain imaging data from middle-to-late life healthy individuals from the UK Biobank. They show that between six and eight hours of sleep duration is associated with the highest cognitive performance and larger grey matter volume in several areas of the brain.

GIST Research reveals a promising new target to thwart Alzheimer’s decades before symptoms start

A person will have Alzheimer’s years before ever knowing it. The disorienting erasure of memories, language, thoughts—in essence, all that makes up one’s unique sense of self—is the final act of this enigmatic disease that spends decades disrupting vital processes and dismantling the brain’s delicate structure.

Once symptoms surface and doctors make a diagnosis, though, it can often be too late. Damage is widespread, impossible to reverse. No cure exists.

Attempts to develop drugs that clear away toxic accumulations of amyloid-beta and tau proteins—hallmarks of the disease that cause neurons to die—have ended in hundreds of failed clinical trials. Today, some scientists are skeptical over whether removing amyloid plaques is even enough. Others have a hunch that the best line of attack won’t target just one aspect of the disease, but many of them, all at once.

/* */