Toggle light / dark theme

Dialing in the temperature needed for precise nuclear timekeeping

For decades, atomic clocks have been the pinnacle of precision timekeeping, enabling GPS navigation, cutting-edge physics research, and tests of fundamental theories. But researchers at JILA, led by JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye, in collaboration with the Technical University of Vienna, are pushing beyond atomic transitions to something potentially even more stable: a nuclear clock.

This clock could revolutionize timekeeping by using a uniquely low-energy transition within the nucleus of a thorium-229 atom. This transition is less sensitive to environmental disturbances than modern atomic clocks and has been proposed for tests of fundamental physics beyond the Standard Model.

This idea isn’t new in Ye’s laboratory. In fact, work in the lab on nuclear clocks began with a landmark experiment, the results of which were published as a cover article of Nature last year, where the team made the first frequency-based, quantum-state-resolved measurement of the thorium-229 nuclear transition in a thorium-doped host crystal. This achievement confirmed that thorium’s nuclear transition could be measured with enough precision to be used as a timekeeping reference.

Laser-based radiation detector allows testing from a safer distance

A multi-institutional team of physicists and engineers has developed a laser-based radiation detection system that operates from as far away as 10 meters and perhaps farther. Their research is published in the journal Physical Review Applied.

Working with , whether in creating weapons or energy, requires monitoring radiation levels to ensure the safety of workers. However, most detectors only allow for testing in close proximity to the source, which means a worker can be in danger of overexposure before they know it has happened. In this new study, the team assigned themselves the goal of developing a new type of system or device that could be used to test from much farther away.

The team started by noting that radiation interacts with in the air around it, resulting in the creation of , so it should be possible to measure the energy of those electrons using a . In testing their ideas, they found that firing a laser into irradiated air did lead to molecule collisions, which produced free electrons.

Scientists take important step toward mitigating errors in analog quantum simulations of many-body problems

Simulations of quantum many-body systems are an important goal for nuclear and high-energy physics. Many-body problems involve systems that consist of many microscopic particles interacting at the level of quantum mechanics. They are much more difficult to describe than simple systems with just two particles. This means that even the most powerful conventional computers cannot simulate these problems.

Quantum computing has the potential to address this challenge using an approach called quantum simulation. To succeed, these simulations need theoretical approximations of how quantum computers represent many-body systems. In research on this topic, at the University of Washington developed a new framework to systematically analyze the interplay of these approximations. They showed that the impact of such approximations can be minimized by tuning simulation parameters.

The study is published in the journal Physical Review A.

Robots In Space: Future Visions author Jacob Colbruno

Come listen to one of the great authors in this year’s edition of Future Visions, Jacob Colbruno.


Join Mike DiVerde as he interviews Jacob Colbruno, a visionary thinker and contributor to the OmniFuturists, about the future of energy and civilization. Discover fascinating insights about small modular nuclear reactors, the Economic Singularity, and the path to superabundance. From hands-on farming experience to deep analysis of future energy needs, Jacob shares unique perspectives on how nuclear power, AI, and technological advancement will reshape society. Learn why the next decade could transform how we live, work, and harness energy for a sustainable future.

#EconomicSingularity #NuclearPower #FutureEnergy #Sustainability #TechInnovation

Physicists capture elusive plasma instability in unprecedented detail

For the first time, scientists have ‘photographed’ a rare plasma instability, where high-energy electron beams form into spaghetti-like filaments.

A new study, published in Physical Review Letters, outlines how a high-intensity infrared laser was used to generate filamentation instability—a phenomenon that affects applications in -based particle accelerators and fusion energy methods.

Plasma is a super-hot mixture of charged particles, such as ions and electrons, which can conduct electricity and are influenced by magnetic fields. Instabilities in plasmas can occur because the flow of particles in one direction or within a specific region can be different from the rest, causing some particles to group up into thin spaghetti-like filaments.

Neutrinos could tell us about the inside of the sun and establish density structure

Neutrinos generated through solar fusion reactions travel effortlessly through the sun’s dense core. Each specific fusion process creates neutrinos with distinctive signatures, potentially providing a method to examine the sun’s internal structure. Multiple neutrino detection observatories on Earth are now capturing these solar particles, which can be analyzed alongside reactor-produced neutrinos with the data eventually enabling researchers to construct a detailed map of the interior of the sun.

The sun is a massive sphere of hot plasma at the center of our solar system and provides the light and heat to make life on Earth possible. Composed mostly of hydrogen and helium, it generates energy through , converting hydrogen into helium in its core. This process releases an enormous amount of energy which we perceive as heat and light.

The sun’s surface, or photosphere, is around 5,500°C, while its core reaches over 15 million°C. It influences everything from our climate to space weather, sending out and occasional bursts of radiation known as . As an average middle-aged star, the sun is about 4.6 billion years old and will (hopefully) continue burning for another 5 billion years before evolving into a red giant and eventually becoming a white dwarf.

How heat from the sun plays a role in seismic activity on Earth

The role of solar heat in earthquake activity https://pubs.aip.org/aip/cha/article-abstract/35/3/033107/33…m=fulltext


Seismology has revealed much of the basics about earthquakes: Tectonic plates move, causing strain energy to build up, and that energy eventually releases in the form of an earthquake. As for forecasting them, however, there’s still much to learn in order to evacuate cities before catastrophes like the 2011 magnitude 9.0 Tōhoku earthquake that, in addition to causing the tsunami that led to the Fukushima nuclear disaster, resulted in more than 18,000 deaths.

In recent years, research has focused on a possible correlation between the sun or moon and on Earth, with some studies pointing to or electromagnetic effects interacting with the planet’s crust, core, and mantle.

In Chaos researchers from the University of Tsukuba and the National Institute of Advanced Industrial Science and Technology in Japan explored the likelihood that Earth’s climate, as affected by , plays a role.

US team gets funds to build nuclear wall to withstand 180 Million°F

A team of scientists has just landed a massive grant to build materials strong enough to withstand the blistering heat and radiation inside a fusion reactor, where temperatures soar beyond 180 million degrees Fahrenheit (100 million degrees Celsius).

The U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) allocated USD 2.3 million to the University of Kentucky to lead the development of next-generation materials that could make commercial fusion power a reality.

Nuclear fusion: WEST beats the world record for plasma duration!

France just achieved a nuclear fusion breakthrough, making limitless energy virtually inevitable.

In a major achievement, France’s WEST Tokamak reactor has maintained a plasma reaction for over 22 minutes, setting a new world record in the quest for sustainable fusion energy.

énergie atomique et aux énergies alternatives (CEA), the experiment surpassed China’s previous record of 1,066 seconds, reaching 1,337 seconds of sustained plasma. + This milestone is a major step toward commercial fusion power, which promises unlimited, clean energy by harnessing the same process that powers the Sun. The challenge lies in achieving a self-sustaining reaction while maintaining extreme temperatures of up to 150 million°C (270 million°F) without damaging reactor components.

While WEST itself won’t become a commercial reactor, the data gathered will be instrumental in developing ITER, the world’s largest fusion project, currently under construction in southern France.

CEA scientists plan to extend reaction times further, increasing power levels and plasma stability. If successful, these advancements could bring humanity closer to realizing the long-held dream of clean, virtually limitless energy, potentially transforming global power generation in the future.

Learn more.