БЛОГ

Archive for the ‘nuclear energy’ category: Page 10

Jul 14, 2023

World’s Largest Nuclear Fusion Rocket Engine Begins Construction

Posted by in categories: nuclear energy, space travel

Nuclear fusion propulsion technology has the potential to revolutionize space travel in terms of both speeds and fuel usage. The same kinds of reactions that power the Sun could halve travel times to Mars, or make a journey to Saturn and its moons take just two years rather than eight.

It’s incredibly exciting, but not everyone is convinced this is going to work: the tech needs ultra-high temperatures and pressures to function.

To help prove the viability of the technology, the largest ever fusion rocket engine is now being built by Pulsar Fusion in Bletchley, in the UK.

Jul 14, 2023

James Webb Space Telescope finds possible evidence of dark stars

Posted by in categories: cosmology, nuclear energy, physics

A trio of astrophysicists, two from Colgate University and the third from the University of Texas, has found evidence of dark stars courtesy of data from the James Webb Space Telescope. In their study, reported in Proceedings of the National Academy of Sciences, Cosmin Ilie, Jillian Paulin and Katherine Freese, analyzed three galaxies spotted by the JWST and how they might relate to dark stars.

Back in 2007, Freese, along with Douglas Spolyar and Paolo Gondolo, proposed the idea of a dark star —rather than nuclear fusion, these theorized dark stars are powered by dark matter. Since that time, researchers have continued to study the idea of such a star, built models to show what they might look like and derived a list of characteristics that such a star might have. In the current study, Ilie, Paulin and Freese have found three candidates in Webb data that fit the bill.

Dark stars, the team suggests, likely could have been born during the early days of the universe—like other stars, they would have been made mostly of helium and hydrogen. But they would also contain dark matter—enough to provide a heat source. Such stars would not then be lit by nuclear fusion. If such stars did exist, they would be much larger than other types of stars that have been observed—so large that they might look like galaxies from Earth-based telescopes.

Jul 14, 2023

A new method might enable the mass generation of fusion energy

Posted by in category: nuclear energy

Scientists achieved ignition at the National Ignition Facility at the Lawrence Livermore National Laboratory in December 2022. However, there are still many obstacles to overcome before fusion energy is technically and economically feasible for widespread production and use.

Researchers at the University of Rochester’s Laboratory for Laser Energetics (LLE) have, for the first time, experimentally demonstrated a method called dynamic shell formation, which may help achieve the goal of creating a fusion power plant.

Jul 13, 2023

Will Tech Breakthroughs Bring Fusion Energy Closer to Reality?

Posted by in categories: innovation, nuclear energy

Abundant carbon-free energy from nuclear fusion has long been considered a holy grail. Recent technological advances and the emergence of startup companies have led to new optimism, but experts caution that the production of fusion power is still a long way off.

Jul 10, 2023

AI, quantum and nuclear technologies are key to Lockheed Martin’s vision for Space 2050

Posted by in categories: business, nuclear energy, quantum physics, robotics/AI, space travel

LOS ANGELES – Artificial intelligence, quantum computing and nuclear power are among the key technologies Lockheed Martin sees as important for future space missions.

Through a project called Destination: Space 2050, Lockheed Martin executives are exploring, for example, how AI could assist scientific exploration of locations where communications with remote sensors would be disrupted by high latency.

In that type of environment, “you really can’t interact with the robotic sensors,” David Lackner, Lockheed Martin senior manager strategy and business development, said during a June 28 webinar. “You have to have something that is super autonomous that can deal with unknown unknowns. We’ve got some really interesting causal autonomy tools that … allow the AI to be super smart about running into something that it hasn’t encountered before.”

Jul 10, 2023

Russia successfully tests secret nuclear-powered “Poseidon” torpedo

Posted by in categories: drones, military, nuclear energy, robotics/AI

Russia has successfully conducted tests on parts of its next-generation “Poseidon” nuclear-capable torpedo, according to reports.

Testing of reactors for the Poseidon unmanned nuclear-powered underwater drones shows “their operability and safety have been confirmed,” Russian state news agency RIA Novosti reported on June 23. The report was also shared on Russian-language social media channels.

“They are ready to work as intended,” the Kremlin-backed outlet quoted an unnamed source “in the military-industrial complex.” The first “sea tests” are scheduled for this summer.

Jul 10, 2023

UK space firm is building a nuclear fusion rocket engine that will get hotter than the Sun

Posted by in categories: climatology, nuclear energy, space travel, sustainability

It will also reduce travel time to Saturn’s moon Titan to just two years.

Pulsar Fusion, a UK-based space firm, is building a nuclear fusion-based rocket engine that could exceed temperatures on the Sun. The construction of the largest-ever fusion rocket engine has begun, and its exhaust speeds could exceed 500,000 miles per hour.

Continue reading “UK space firm is building a nuclear fusion rocket engine that will get hotter than the Sun” »

Jul 7, 2023

Pulsar Fusion wants to use nuclear fusion to make interstellar space travel a reality

Posted by in categories: nuclear energy, space travel

Space propulsion company Pulsar Fusion has started construction on a large nuclear fusion chamber in England, as it races to become the first firm to fire a nuclear fusion-powered propulsion system in space.

Nuclear fusion propulsion tech, arguably a golden goose of the space industry, could reduce the travel time to Mars by half and cut the travel time to Titan, Saturn’s moon, to two years instead of 10. It sounds like science fiction, but Pulsar CEO Richard Dinan told TechCrunch in a recent interview that fusion propulsion was “inevitable.”

“You’ve got to ask yourself, can humanity do fusion?” he said. “If we can’t, then all of this is irrelevant. If we can — and we can — then fusion propulsion is totally inevitable. It’s irresistible to the human evolution of space. This is happening, because the application is irresistible.”

Jul 6, 2023

Chemists have a new tool to predict 3D structures of f-block organometallics

Posted by in categories: chemistry, computing, nuclear energy

One of the greatest challenges facing the future of clean nuclear energy is scientists’ ability to recover heavy metals from nuclear waste, such as lanthanides and actinides. A new computational tool could help chemists design ligands to selectively bind valuable metals in organometallic complexes.

Nuclear waste contains a smorgasbord of elements from across the periodic table, including transition metals, lanthanides, and actinides. Ideally, scientists would like to reduce the amount of waste generated from nuclear reactors by separating out elements that could be repurposed elsewhere. To tackle these tricky chemical separation techniques, chemists often start with 3D structural models to design ligands that can selectively bind the desired metal to form an organometallic complex that can later be isolated.

Though researchers working with d-block organometallics have an arsenal of structural prediction tools at their disposal, there are no resources available to do the same for the full range of lanthanide and actinide complexes. That’s partly because these f-block elements can form higher coordinate complexes with ligands compared to d-block transition metals, according to Ping Yang and Michael G. Taylor, computational chemists at Los Alamos National Laboratory.

Jun 30, 2023

Decoding Nuclear Matter: A Two-Dimensional Solution Unveils Neutron Star Secrets

Posted by in categories: information science, mathematics, nuclear energy, particle physics, space

Scientists at Brookhaven National Laboratory have used two-dimensional condensed matter physics to understand the quark interactions in neutron stars, simplifying the study of these densest cosmic entities. This work helps to describe low-energy excitations in dense nuclear matter and could unveil new phenomena in extreme densities, propelling advancements in the study of neutron stars and comparisons with heavy-ion collisions.

Understanding the behavior of nuclear matter—including the quarks and gluons that make up the protons and neutrons of atomic nuclei—is extremely complicated. This is particularly true in our world, which is three dimensional. Mathematical techniques from condensed matter physics that consider interactions in just one spatial dimension (plus time) greatly simplify the challenge. Using this two-dimensional approach, scientists solved the complex equations that describe how low-energy excitations ripple through a system of dense nuclear matter. This work indicates that the center of neutron stars, where such dense nuclear matter exists in nature, may be described by an unexpected form.

Page 10 of 117First7891011121314Last