Fermi Inc. has signed deals to begin production of four big nuclear-power reactors that would be used for a private data center grid campus in the Texas Panhandle.
US taps 11 firms to fast-track advanced nuclear reactor projects by 2026.
The United States has picked 11 advanced reactor projects to begin President Trump’s Nuclear Reactor Pilot Program.
The US Department of Energy (DOE) announced on Tuesday that it will work, alongside the industry, with these 11 projects to construct, operate, and achieve criticality of at least three test reactors using the DOE authorization process by July 4, 2026.
The selection is a major step towards streamlining nuclear reactor testing and opening a new pathway toward fast-tracking commercial licensing activities.
While the technology of nuclear batteries has been available since the 1950s, today’s drive to electrify and decarbonize increases the impetus to find emission-free power sources and reliable energy storage. As a result, innovations are bringing renewed focus to nuclear energy in batteries.
Nuclear batteries — those using the natural decay of radioactive material to create an electric current — have been used in space applications or remote operations such as arctic lighthouses, where changing a battery is difficult or even impossible. The Mars Science Laboratory rover, for example, uses radioisotopic power systems (RPS), which convert heat from radioactive decay into electricity via a thermoelectric generator. Betavolt’s innovation, 3, is a betavoltaic battery that uses beta particles rather than heat as its energy source. (Probably a repost from March 11 2024)
There are additional challenges that hinder the wider usage of these and all types of nuclear batteries, particularly material supply and discomfort with the use of radioactive materials. Yet, the physical and materials science behind this technology could unlock important advances for CO2-free energy and provide power for applications where currently available energy storage technologies are insufficient.
How do betavoltaic batteries work?
Betavoltaic batteries contain radioactive emitters and semiconductor absorbers. As the emitter material naturally decays, it releases beta particles, or high-speed electrons, which strike the absorber material in the battery, separating electrons from atomic nuclei in the semiconductor absorber. Separation of the resulting electron-hole pairs generates an electric current in the absorber, resulting in electrical power that can be delivered by the battery.
A North Carolina–based company may have just given the U.S. a major boost toward energy independence and a cleaner future. Interesting Engineering reports that Global Laser Enrichment (GLE) has completed a large-scale test of its groundbreaking SILEX laser uranium enrichment process, marking what could be a new era for domestic nuclear fuel production.
The demonstration, held at GLE’s Test Loop facility in Wilmington, produced hundreds of pounds of low-enriched uranium (LEU) and confirmed the technology’s ability to operate at a commercial scale. The company plans to continue testing through 2025 while expanding its manufacturing base to support full-scale operations.
Developed in partnership with Australia’s Silex Systems, the SILEX — short for Separation of Isotopes by Laser EXcitation — process uses precisely tuned lasers to separate uranium isotopes selectively. The technology is designed to be far more efficient than existing gas centrifuge systems, which have dominated enrichment since the 20th century.
New observations from the James Webb Space Telescope hint that the universe’s first stars might not have been ordinary fusion-powered suns, but enormous “supermassive dark stars” powered by dark matter annihilation. These colossal, luminous hydrogen-and-helium spheres may explain both the existence of unexpectedly bright early galaxies and the origin of the first supermassive black holes.
In the early universe, a few hundred million years after the Big Bang, the first stars emerged from vast, untouched clouds of hydrogen and helium. Recent observations from the James Webb Space Telescope (JWST) suggest that some of these early stars may have been unlike the familiar (nuclear fusion-powered) stars that astronomers have studied for centuries. A new study led by Cosmin Ilie of Colgate University, together with Shafaat Mahmud (Colgate ’26), Jillian Paulin (Colgate ’23) at the University of Pennsylvania, and Katherine Freese at The University of Texas at Austin, has identified four extremely distant objects whose appearance and spectral signatures match what scientists expect from supermassive dark stars.
“Supermassive dark stars are extremely bright, giant, yet puffy clouds made primarily out of hydrogen and helium, which are supported against gravitational collapse by the minute amounts of self-annihilating dark matter inside them,” Ilie said. Supermassive dark stars and their black hole remnants could be key to solving two recent astronomical puzzles: i. the larger than expected extremely bright, yet compact, very distant galaxies observed with JWST, and ii. the origin of the supermassive black holes powering the most distant quasars observed.
Prototype component of the divertor of China’s Comprehensive Research Facility for Fusion Technology (CRAFT) Photo: Xinhua.
China has achieved an important breakthrough in the development of its next-generation “artificial sun” with the prototype component of the divertor of China’s Comprehensive Research Facility for Fusion Technology (CRAFT), passing expert evaluation and acceptance procedures on Monday, Xinhua News Agency reported.
The CRAFT is a platform on which engineers develop and test key components of fusion energy reactors.
Mitsubishi says that the robot has been developed to carry out non-destructive inspections of nuclear reactor vessels in underwater environments.
It states that the robot has been working at pressurized water reactor power plants across Japan since 1995, and has been used at least 50 times.
The robot can be controlled remotely using a computer and joystick by operators. The robot navigates around the hazardous environment, swimming in the water inside the nuclear reactor vessel, sticking to the walls with vacuum-pad feet, and using a probe to carry out ultrasonic testing.
Dr. Brian A. Grierson, Ph.D. is a leading physicist and engineer in magnetic fusion energy and is currently Director of Fusion Energy Technologies at General…