Toggle light / dark theme

Scientists make game-changing breakthrough that could drive futuristic nuclear energy facilities: ‘This provides crucial technical support’

A research team from the University of South China has developed a set of algorithms to help optimize radiation-shielding design for new types of nuclear reactors.

Their achievement, which was published in the journal of Nuclear Science and Techniques and shared by TechXplore, will help engineers meet the difficult demands for next-gen reactors, including transportable models, as well as those intended for marine and space environments.

Safety is of paramount concern when it comes to nuclear energy, especially considering the public’s perception of this clean energy source following some notable accidents over the past 68 years.

Monte Carlo method

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary developer of the method, mathematician Stanisław Ulam, was inspired by his uncle’s gambling habits.

Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution. They can also be used to model phenomena with significant uncertainty in inputs, such as calculating the risk of a nuclear power plant failure. Monte Carlo methods are often implemented using computer simulations, and they can provide approximate solutions to problems that are otherwise intractable or too complex to analyze mathematically.

Monte Carlo methods are widely used in various fields of science, engineering, and mathematics, such as physics, chemistry, biology, statistics, artificial intelligence, finance, and cryptography. They have also been applied to social sciences, such as sociology, psychology, and political science. Monte Carlo methods have been recognized as one of the most important and influential ideas of the 20th century, and they have enabled many scientific and technological breakthroughs.

This Explosive Plasma Discovery by a US Lab Is About to Redefine Nuclear Energy and Microchip Performance Forever

IN A NUTSHELL 🔬 PPPL’s new simulation method revolutionizes fusion research and chip manufacturing by accurately modeling plasma behaviors. 💻 The development addresses significant computational challenges, enhancing stability and efficiency in plasma simulations. ⚡ Improved simulations allow for precise conservation of energy, ensuring results reflect real-world physical processes. 🚀 Future applications include advancements in fusion

Sunbirds Nuclear Fusion Rocket mission to Titan, Mars & Psyche

Experience Sunbird and step into the future of propulsion. Dive into our interactive 3D experience and see Sunbird in action as it unlocks new frontiers.

Meet Sunbird, a marvel of space propulsion innovation, powered by our state-of-the-art Dual Direct Fusion Drive (DDFD). With a remarkable specific impulse of 10,000–15,000 seconds and 2 MW of power, Sunbird is redefining what’s possible in space travel.

The compact DDFD isn’t just an engine, it’s a leap forward, providing both thrust and electrical power for next-generation spacecraft. This breakthrough opens unprecedented possibilities to explore the solar system faster and with greater payloads than ever before.

Ready to see the future launch?

A special thank you to Dark Star Labs for bringing our vision to life with this incredible video.

Radiotrophic fungus

Scientists discover fungus species in Chernobyl nuclear zone have mutated to feed on radiation:

Cryptococcus neoformans, discovered at the site in 1991, feeds on radiation through a process called radiosynthesis. Its high levels of melanin absorb harmful radiation and convert it into chemical energy, much like how plants use photosynthesis to create energy.

NASA scientists, in collaboration with Johns Hopkins University, are now testing melanin extracted from the fungi aboard the International Space Station. ’ If successful, this natural shield could protect astronauts and equipment from cosmic rays, a significant challenge for long-term space exploration. “Space radiation is dangerous and damages matter,” explains researcher Radamés J.B. Cordero. “A material like this could shield astronauts and benefit people here on Earth.” This discovery turns a remnant of a nuclear disaster into a potential lifesaver for humanity’s journey into the cosmos.

Learn more.


Radiotrophic fungi are fungi that can perform the hypothetical biological process called radiosynthesis, which means using ionizing radiation as an energy source to drive metabolism. It has been claimed that radiotrophic fungi have been found in extreme environments such as in the Chernobyl Nuclear Power Plant.

Most radiotrophic fungi use melanin in some capacity to survive. [ 1 ] The process of using radiation and melanin for energy has been termed radiosynthesis, and is thought to be analogous to anaerobic respiration. [ 2 ] However, it is not known if multi-step processes such as photosynthesis or chemosynthesis are used in radiosynthesis or even if radiosynthesis exists in living organisms.

Russian scientists make incredible breakthrough that could revolutionize nuclear power: ‘Will cut its use of natural uranium by 50%’

Join our free newsletter for weekly updates on the latest innovations improving our lives and shaping our future, and don’t miss this cool list of easy ways to help yourself while helping the planet.

First appeared on The Cool Down.

“Mining the Moon Begins”: US Firm’s Robot to Extract Rare Helium-3 and Launch Payloads Back to Earth for Futuristic Energy Use

IN A NUTSHELL 🌕 Interlune, a Seattle-based startup, plans to extract helium-3 from the moon, aiming to revolutionize clean energy and quantum computing. 🚀 The company has developed a prototype excavator capable of digging up to ten feet into lunar soil, refining helium-3 directly on the moon for efficiency. 🔋 Helium-3 offers potential for nuclear

Nuclear Glow Illuminates Dark Matter

High-energy particles or gamma rays are usually needed to kick an atomic nucleus up to a higher-energy state. But last year, scientists excited thorium-229 nuclei with just laser light (see Viewpoint: Shedding Light on the Thorium-229 Nuclear Clock Isomer). Laser-excited nuclei could be useful for making precise timekeepers and sensitive quantum sensors. And now, Wolfram Ratzinger at the Weizmann Institute of Science in Israel and his colleagues have shown how these nuclei also provide a way to detect certain speculative particles that may constitute dark matter [1].

Several models of dark matter involve axions or other extremely light bosons. Thanks to their lightness, these particles would have to be abundant—so much so that they would collectively behave like a classical field, oscillating at a frequency proportional to their mass. The particles’ interactions with the building blocks of nuclei—quarks and gluons—would cause various nuclear properties to oscillate at that same frequency. Among those properties is the energy of the photon emitted by an excited thorium-229 nucleus. Crucially, the oscillations in that energy are predicted to be much more pronounced, and therefore easier to detect, than those in other properties.

Ratzinger and his colleagues conducted the first-ever search for these oscillations in a previously reported spectrum of light emitted by excited thorium-229 nuclei. Finding no oscillations, the researchers set upper limits on the coupling strength of ultralight dark matter particles to quarks and gluons for particles ranging in mass from 10–20 to 10–13 eV. These limits are less stringent than those obtained through other means, but the team anticipates that ongoing and future experiments could set much stronger and possibly decisive constraints.

Upgraded technique for extracting uranium from seawater promises higher efficiency and lower costs

A team of chemists, materials scientists and engineers affiliated with several institutions in China, working with a colleague from Taiwan, has developed a new way to remove uranium from seawater that is much more efficient than other methods. Their paper is published in the journal Nature Sustainability.

The current method for obtaining uranium for use in nuclear power plants is mining it from the ground. Canada, Kazakhstan and Australia are currently the largest producers of uranium, accounting for nearly 70% of . Other countries such as the U.S., China and Russia would like to overcome their reliance on foreign providers of the radioactive element, and have been looking for ways to efficiently extract it from seawater.

The world’s oceans have far more uranium than ground sources, but it is highly dilute, which makes harvesting difficult and expensive. In this new effort, the team working in China has found a way to do it much more efficiently, resulting in lower costs. Notably, China builds more than any other country and would very much like to be able to produce its own uranium.