БЛОГ

Archive for the ‘nuclear energy’ category: Page 4

Nov 9, 2024

What exactly happens when the nucleus of an atom splits in two? Science just found out

Posted by in categories: biotech/medical, nuclear energy, science

Nuclear fission has powered our world and medical advancements for decades, yet some of its secrets have remained elusive.

One of the biggest puzzles? What exactly happens when an atom’s nucleus splits apart at its “neck rupture” point.

Aurel Bulgac, a physics professor at the University of Washington, has been delving into this very question. He and his team set out to simulate the intricate particle dance during this critical moment of fission.

Nov 9, 2024

A New Twist on Stellarator Design

Posted by in categories: nuclear energy, particle physics

Breaking the problem into pieces makes it easier to design a fusion reactor’s coils for optimum energy confinement.

In magnetic-confinement fusion, different reactor designs pose different trade-offs. Stellarators use external magnetic fields to confine plasma in the shape of a twisted donut. Such fields are relatively easy to maintain in a steady state, but optimizing their geometry to minimize energy loss is much more difficult. Tokamaks, in contrast, confine plasma in an axisymmetric geometry using magnetic fields partially generated via currents induced in the plasma. This geometry provides near-perfect confinement at the expense of stability and operational simplicity. José Luis Velasco of Spain’s Center for Energy, Environmental and Technological Research (CIEMAT) and his colleagues now present a new family of stellarator magnetic-field configurations that benefit from tokamak-like energy confinement [1].

Magnetic fusion designs achieve confinement using nested magnetic-flux surfaces. Ideally, each charged particle remains tied to a given surface contour and the plasma as a whole exhibits near-zero radial drift. Such a condition results in perfect confinement, aside from losses due to collisions among particles on the same contour. Tokamaks inherently avoid radial drift, but to achieve the same level of confinement in a stellarator means imposing constraints on each magnetic surface’s topology, sometimes requiring infeasible coil designs.

Nov 9, 2024

Study identifies promising materials for fusion reactors

Posted by in categories: materials, nuclear energy

Nuclear fusion could be an ideal solution to mankind’s energy problem, guaranteeing a virtually limitless source of power without greenhouse gas emissions. But there are still huge technological challenges to overcome before getting there, and some of them have to do with materials.

Nov 9, 2024

Scientists use high-energy heavy ion collisions as a new tool to reveal subtleties of nuclear structure

Posted by in category: nuclear energy

“In low-energy experiments, it’s like taking a long-exposure picture,” said Chun Shen, a theorist at Wayne State University whose calculations were used in the new analysis.

Because the exposure time is long, the low-energy methods do not capture all the subtle variations in the arrangement of protons that can occur inside a nucleus at very fast timescales. And because most of these methods use electromagnetic interactions, they can’t directly “see” the uncharged neutrons in the nucleus.

“You only get an average of the whole system,” said Dean Lee, a low-energy theorist at the Facility for Rare Isotope Beams, a DOE Office of Science user facility at Michigan State University. Though Lee and Shen are not co-authors on the study, they and other theorists have contributed to developing this new nuclear imaging method.

Nov 8, 2024

Germany turns on the most powerful generator in history: It’s not a nuclear power plant

Posted by in category: nuclear energy

By 2027, Germany will be drawing clean energy from a renewable source in Lingen that provides 300 MW electricity capacity generated from green hydrogen.

Nov 6, 2024

See Spacecraft Views: Sun Blasts Massive X4.5-Class Solar Flare

Posted by in categories: nuclear energy, space travel

Researchers have been performing these experiments for nearly 30 years but they always encounter the same problem: the bottle technique yields an average neutron survival time of 880 s, while the beam method produces a lifetime of 888 s. Importantly, this eight-second difference is larger than the uncertainties of the measurements, meaning that known sources of error cannot explain it.

A mix of different neutron states?

A team led by Benjamin Koch and Felix Hummel of TU Wien’s Institute of Theoretical Physics is now suggesting that the discrepancy could be caused by nuclear decay producing free neutrons in a mix of different states. Some neutrons might be in the ground state, for example, while others could be in a higher-energy excited state. This would alter the neutrons’ lifetimes, they say, because elements in the so-called transition matrix that describes how neutrons decay into protons would be different for neutrons in excited states and neutrons in ground states.

Nov 5, 2024

Meta’s nuclear power plans were foiled by bees — yes, bees

Posted by in categories: nuclear energy, robotics/AI

A rare species of bee was found on land where the company was planning to put a nuclear-powered artificial intelligence data center, the Financial Times reported, citing people familiar with the matter. Meta CEO Mark Zuckerberg reportedly told employees during an all-hands meeting that the rare bees would further complicate a deal with an existing nuclear power plant to build the data center.

Oct 29, 2024

Nuclear Rockets could Travel to Mars in Half the Time, but designing the Reactors that would Power them isn’t

Posted by in categories: chemistry, nuclear energy, particle physics, space travel

NASA plans to send crewed missions to Mars over the next decade—but the 140 million-mile (225 million-kilometer) journey to the red planet could take several months to years round trip.

This relatively long transit time is a result of the use of traditional chemical rocket fuel. An alternative technology to the chemically propelled rockets the agency develops now is called nuclear thermal propulsion, which uses nuclear fission and could one day power a rocket that makes the trip in just half the time.

Nuclear fission involves harvesting the incredible amount of energy released when an atom is split by a neutron. This reaction is known as a fission reaction. Fission technology is well established in power generation and nuclear-powered submarines, and its application to drive or power a rocket could one day give NASA a faster, more powerful alternative to chemically driven rockets.

Oct 26, 2024

An Efficient Way to Optimize Laser-Driven Nuclear Fusion

Posted by in categories: information science, nuclear energy

In 2022, a nuclear-fusion experiment yielded more energy than was delivered by the lasers that ignited the fusion reaction (see Viewpoint: Nuclear-Fusion Reaction Beats Breakeven). That demonstration was an example of indirect-drive inertial-confinement fusion, in which lasers collapse a fuel pellet by heating a gold can that surrounds it. This approach is less efficient than heating the pellet directly since the pellet absorbs less of the lasers’ energy. Nevertheless, it has been favored by researchers at the largest laser facilities because it is less sensitive to nonuniform laser illumination. Now Duncan Barlow at the University of Bordeaux, France, and his colleagues have devised an efficient way to improve illumination uniformity in direct-drive inertial-confinement fusion [1]. This advance helps overcome a remaining barrier to high-yield direct-drive fusion using existing facilities.

Triggering self-sustaining fusion by inertial confinement requires pressures and temperatures that are achievable only if the fuel pellet implodes with high uniformity. Such uniformity can be prevented by heterogeneities in the laser illumination and in the way the beams interact with the resulting plasma. Usually, researchers identify the laser configuration that minimizes these heterogeneities by iterating radiation-hydrodynamics simulations that are computationally expensive and labor intensive. Barlow and his colleagues developed an automatic, algorithmic approach that bypasses the need for such iterative simulations by approximating some of the beam–plasma interactions.

Compared with an experiment using a spherical, plastic target at the National Ignition Facility in California, the team’s optimization method should deliver an implosion that reaches 2 times the density and 3 times the pressure. But the approach can also be applied to other pellet geometries and at other facilities.

Oct 26, 2024

For heating plasma in fusion devices, researchers unravel how electrons respond to neutral beam injection

Posted by in categories: nuclear energy, particle physics

Heating a plasma for fusion research requires megawatts of power. One approach that research tokamaks use to achieve the necessary power input is neutral beam injection (NBI). With NBI, fast neutral particles are generated in a device called a beam source and then injected into the plasma.

Page 4 of 13712345678Last