Toggle light / dark theme

Scientists from Jilin University, the Center for High Pressure Science and Technology Advanced Research, and Skoltech have synthesized lanthanum-cerium polyhydride, a material that promises to facilitate studies of near-room-temperature superconductivity. It offers a compromise between the polyhydrides of lanthanum and cerium in terms of how much cooling and pressure it requires. This enables easier experiments, which might one day lead scientists to compounds that conduct electricity with zero resistance at ambient conditions—an engineering dream many years in the making. The study was published in Nature Communications.

One of the most intriguing unsolved questions in modern physics is: Can we make a material that conducts electricity with zero resistance (superconducts) at and ? Such a superconductor would enable power grids with unprecedented efficiency, ultrafast microchips, and electromagnets so powerful they could levitate trains or control fusion reactors.

In their search, scientists are probing multiple classes of materials, slowly nudging up the temperature they superconduct at and decreasing the they require to remain stable. One such group of materials is polyhydrides—compounds with extremely high hydrogen content. At −23°C, the current champion for is a lanthanum polyhydride with the formula LaH10. The trade-off: It requires the pressure of 1.5 million atmospheres. At the opposite end of the spectrum, cuprates are a class of materials that superconduct under normal atmospheric pressure but require —no more than −140°.

When two helium-4 (4He) nuclei smash together, they form a beryllium-8 nucleus. A third 4 He striking this nucleus may result in an excited form of carbon-12 (12 C), with the 4 He particles arranging in a neat cluster. Clustering of neutrons and protons during high-energy collisions is known to determine the stability of the collision products. But how clustering affects the dynamics and reaction outcomes of high-energy collisions remains an open question. Now Catalin Frosin of the University of Florence, Italy, and his colleagues report experimental data that detail how reaction products form during this kind of collision [1]. The results support models that suggest increased collision energy can drive clustering activity and result in emission of lighter, more energetic particles.

The experiments entail bombarding 12 C targets with pulsed beams of sulfur-32 and neon-20. Frosin and his colleagues characterized the resulting fragments using FAZIA, a detector designed to probe charged particles around the Fermi energy. Meanwhile, the team ran simulations, with and without cluster correlations, to predict the nucleon interactions and the decays of unstable products. Models with clustering produced particles that are more energetic—in agreement with the experimental data. The researchers attributed this effect to energy and momentum conservation in the nucleon–nucleon and nucleon–cluster collisions during the early, dynamic phase of the interaction.

The findings demonstrate FAZIA’s capability to extract precise information about the properties of nuclear fragments. The researchers say that similar experiments performed elsewhere looked only at carbon+carbon reactions. Extending them to heavier reactants provides a wider arena for interpreting fragmentation mechanisms.

Unlike other businesses pushing clean nuclear energy, Helion is working on a “pulsed non-ignition fusion system.”

Microsoft Corporation has placed a big bet on Helion by agreeing to purchase power generated by its nuclear fusion process. Helion is also backed by Sam Altman, the OpenAI CEO with whom Microsoft is spearheading the artificial intelligence (AI) race.

Nuclear fusion is the holy grail of clean energy as it promises the generation of power without the emission of carbon or hassles of radioactive nuclear waste.


Peter Hansen/iStock.

Helion Energy has announced that Microsoft will become its first customer, in a deal that aims to supply 50 MW of fusion power by 2028.

Assembled electromagnetic coils that will be used in Helion’s 7th fusion prototype, Polaris. (Photo: Business Wire)

Helion Energy is a privately held fusion energy company founded in 2013 by Dr. David Kirtley and Dr. John Slough, both of whom are experts in plasma physics. The company is headquartered in Washington, USA, and is focused on developing a practical, clean, and abundant source of fusion energy.

Scientists have been dreaming about nuclear fusion for decades. Microsoft thinks the technology is nearly ready to plug into the grid.

Microsoft just signed a jaw-dropping agreement to purchase electricity from a nuclear fusion generator. Nuclear fusion, often called the Holy Grail of energy, is a potentially limitless source of clean energy that scientists have been chasing for the better part of a century.

A company called Helion Energy thinks it can deliver that Holy Grail to Microsoft by 2028. It announced a power purchase agreement with Microsoft this morning that would see it plug in the world’s first commercial fusion generator to a power grid in Washington.


“I would say it’s the most audacious thing I’ve ever heard.”

Editor’s note: “Nuclear Power Breakthrough Makes “Limitless” Energy Possible” was previously published in December 2022. It has since been updated to include the most relevant information available.

For a moment, imagine a world of limitless energy – one where energy is so abundant that everyone can power their homes and businesses for mere pennies.

These days, it’s tough to imagine a world like that. Last winter, the average U.S. heating bill was $1,000.

TerraPower, founded by billionaire and Microsoft co-founder Bill Gates in 2008, is opening a new nuclear power plant in Kemmerer, Wyoming. The plant will be the first of its kind, with the company hoping to revolutionize the nuclear energy industry in the U.S. to help fight climate change and support American energy independence.

“Nuclear energy, if we do it right, will help us solve our climate goals,” Gates told ABC News. “That is, get rid of the greenhouse gas emissions without making the electricity system far more expensive or less reliable.”

Gates met with ABC News’ chief business, economics, and technology correspondent Rebecca Jarvis in Kemmerer to talk about the project.

This is really for the general public — and for people new to fusion. I gave a 20 minute talk** to a local group in Pittsburgh. We decided to record the audio, and put it out on the web for other people to enjoy. The top Ten things you should know about fusion are:

10. We have Been Doing It For Years.
9. We Know How To Make It Work.
8. You Can Do Fusion At Home.
7. The US Really Funded Fusion For about 15 year.
6. There Is More Than One Method.
5. Fusion Startups Are Real.
4. We Need A Pipeline.
3. China Is Taking An Interest.
2. Superconductors Are Game Changers.
1. Climate Change Is Not Waiting.

** Edits:
1. When I say 8, I meant 9
2. To clarify: ENN is investing ~10 million to built a duplicate of Dr. Cohens’ machine over in China. They’ve staffed up over there.

Advancing Nuclear Energy Science And Technology For U.S. Energy, Environmental And Economic Needs — Dr. Katy Huff, Ph.D. — Assistant Secretary, U.S. Department of Energy Office of Nuclear Energy, U.S. Department of Energy.


Dr. Kathryn Huff, Ph.D. (https://www.energy.gov/ne/person/dr-kathryn-huff) is Assistant Secretary, Office of Nuclear Energy, U.S. Department of Energy, where she leads their strategic mission to advance nuclear energy science and technology to meet U.S. energy, environmental, and economic needs, both realizing the potential of advanced technology, and leveraging the unique role of the government in spurring innovation.

Prior to her current role, Dr. Huff served as a Senior Advisor in the Office of the Secretary and also led the office as the Principal Deputy Assistant Secretary for Nuclear Energy.

Before joining the Department of Energy, Dr. Huff was an Assistant Professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois at Urbana-Champaign where she led the Advanced Reactors and Fuel Cycles Research Group. She was also a Blue Waters Assistant Professor with the National Center for Supercomputing Applications.

Dr. Huff was previously a Postdoctoral Fellow in both the Nuclear Science and Security Consortium and the Berkeley Institute for Data Science at the University of California — Berkeley. She received her PhD in Nuclear Engineering from the University of Wisconsin-Madison and her undergraduate degree in Physics from the University of Chicago. Her research focused on modeling and simulation of advanced nuclear reactors and fuel cycles.