Toggle light / dark theme

Chi-Nu experiment ends, bolsters nuclear security and energy reactors

The results of the Chi-Nu physics experiment at Los Alamos National Laboratory have contributed essential, never-before-observed data for enhancing nuclear security applications, understanding criticality safety and designing fast-neutron energy reactors. The Chi-Nu project, a years-long experiment measuring the energy spectrum of neutrons emitted from neutron-induced fission, recently concluded the most detailed and extensive uncertainty analysis of the three major actinide elements—uranium-238, uranium-235 and plutonium-239.

“Nuclear and related nuclear chain reactions were only discovered a little more than 80 years ago, and experimenters are still working to provide the full picture of fission processes for the major actinides,” said Keegan Kelly, a physicist at Los Alamos National Laboratory. “Throughout the course of this project, we have observed clear signatures of fission processes that in many cases were never observed in any previous experiment.”

The Los Alamos team’s final Chi-Nu study, on the isotope uranium-238, was recently published in Physical Review C. The experiment measured uranium-238’s prompt fission spectrum: the energy of the neutron inducing the fission—the neutron that crashes into a nucleus and splits it—and the potentially wide-ranging energy distribution (the spectrum) of the neutrons released as a result. Chi-Nu focuses on “fast-neutron-induced” fission, with incident neutron energies in millions of electron volts, where there have typically been very few measurements.

Microsoft is going nuclear to power its AI ambitions

Microsoft is looking at next-generation nuclear reactors to power its data centers and AI, according to a new job listing for someone to lead the way.

Microsoft thinks next-generation nuclear reactors can power its data centers and AI ambitions, according to a job listing for a principal program manager who’ll lead the company’s nuclear energy strategy.

Data centers already use a hell of a lot of electricity, which could thwart the company’s climate goals unless it can find clean sources of energy. Energy-hungry AI makes that an even bigger challenge for the company to overcome. AI dominated Microsoft’s Surface event last week.


Microsoft is hiring someone to lead its nuclear strategy.

Nuclear Power: Small Modular Reactors

Small Modular Reactors are a promising area of nuclear technology that may be the pathway forward to cheap, safe, and sustainable energy.
Go to https://brilliant.org/IsaacArthur/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/nuclear-power-…r-reactors.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/nuclear-power-…ation-only.

Credits:
Nuclear Power: Small Modular Reactors.
Science & Futurism with Isaac Arthur.
Episode 390, April 13, 2023
Written, Produced & Narrated by Isaac Arthur.

Special Thanks to Last Energy https://www.lastenergy.com.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator

Why is China’s trying to build an artificial sun?

China is looking for a clean, sustainable energy source and is turning to the power of nuclear fusion.

What is a clean source of power that could provide clean and unlimited energy? Nuclear energy, which uses nuclear fission, comes to mind. But there is another potential source of energy that would promote sustainability – nuclear fusion.

Nuclear fusion is the opposite of nuclear fission. Fission means splitting atoms apart, which results in the release of energy. Fusion is when two atomic nuclei combine to form a heavier nucleus. Fusion is the process that powers the Sun and the stars.

Student-built nuclear fusion reactor to debut in Australia

The student-built Tokamak reactor will be 3 × 3 feet in size and be the first such facility built for nuclear fusion in a university.

Australia is set to become home to the world’s first nuclear fusion facility designed, built, and operated by students. The project is planned by the University of New South Wales (UNSW) but will not use nuclear fuel, a press release said.

Nuclear fusion is the process where atoms of lighter elements like hydrogen are heated up to hundreds of millions of degrees Celsius to enable their fusion under large amounts of force. The process releases large amounts of energy, which can then be used to power devices and machines.

Watch the nuclear-powered flying hotel that can stay airborne for years with 5,000 passengers

A concept video of Sky Cruise, a giant flying machine that can carry 5,000 passengers and has all the luxuries of the world, has gone viral on the internet. The maker of the video claims that such an aircraft built in the future would have no carbon footprint, The Independent reported.

The concept of a floating world in itself is not new and has been described even in Jonathan Swift’s works from the 18th century, much before the Wright Brothers made their first flight. Fans of animated movies might have also come across the concept in 1986 Japanese movie, Castle in the Sky.

Five Interesting Facts to Know About Zirconium

Zirconium, the metal extracted from the mineral, zircon, may not be well-known, but its remarkable properties make it indispensable in nuclear power, the chemical industry, medicine and more. Since ancient times, zircon — a word believed to have originated from the Persian zargun, meaning gold-like — has been used in jewellery and decorations.

The IAEA has released The Metallurgy of Zirconium, a three-volume publication offering a comprehensive overview of the metal, its extraction, properties and applications in nuclear energy. Here are five interesting facts about zirconium.

Machine learning might help us finally unlock nuclear fusion

What if we could replace a time-consuming analysis, an important prerequisite to judge the right mix of isotopes to use?

Why can’t we find power the same way stars do— clean, renewable, and free of radioactive waste?

Humanity’s quest for clean and sustainable energy sources has reached a pivotal moment as researchers explore nuclear fusion. Unlike current nuclear fission plants that produce energy at the cost of radioactive waste, nuclear fusion offers the promise of virtually limitless and environmentally friendly power generation.