The US observed Russian naval vessels preparing for a possible test of a new nuclear-powered torpedo in recent weeks, a senior US official with direct knowledge told CNN.
Among the vessels which took part in the preparations was the Belgorod, a cruise missile submarine modified for special operations that is able to launch unmanned underwater vehicles including the Poseidon torpedo.
In the last week, the vessels were observed leaving the testing area in the Arctic Sea and heading back to port without carrying out a test. The US believes the Russians may have encountered technical difficulties.
A magnetic field can significantly boost the performance of a large-scale fusion experiment that may lead to a future source of clean power.
Nuclear fusion could provide a clean power source, but one of the technological challenges is maintaining the fuel at a high enough temperature for a long enough time. In a technique called inertial confinement fusion (ICF)—where lasers initiate the nuclear reaction—a magnetic field has been shown to improve heating. Now researchers have shown that a magnetic field can also help in a large-scale experiment with a more complicated design that produces far more energy [1]. The applied field increased the fuel’s temperature by 40% and tripled the fusion reaction’s efficiency. The work provides a step toward increasing the robustness and energy output of the fusion reaction and provides the first proof of concept of magnetization-assisted fusion in a large-scale experiment.
In the simplest version of ICF, synchronized laser pulses hit a capsule filled with cold hydrogen fuel, causing it to implode. The implosion heats the fuel and creates a spot of burning plasma (see Viewpoint: Fusion Turns Up the Heat). The “hot spot” serves as a spark that initiates burning throughout the fuel, driving a self-sustaining fusion reaction that releases energy. However, these implosions can fail to generate significant fusion energy if the fuel pellet has small imperfections on its surface or if the lasers are not perfectly timed. But if the fuel could be heated to temperatures higher than was possible in recent experiments, there would be more margin for error, which could alleviate the sensitivity to such details.
Quantum chromodynamics (QCD) is one of the pillars of the Standard Model of particle physics. It describes the strong interaction – one of the four fundamental forces of nature. This force holds quarks and gluons – collectively known as partons – together in hadrons such as the proton, and protons and neutrons together in atomic nuclei. Two hallmarks of QCD are chiral symmetry breaking and asymptotic freedom. Chiral symmetry breaking explains how quarks generate the masses of hadrons and therefore the vast majority of visible mass in the universe. Asymptotic freedom states that the strong force between quarks and gluons decreases with increasing energy. The discovery of these two QCD effects garnered two Nobel prizes in physics, in 2008 and 2004, respectively.
High-energy collisions of lead nuclei at the Large Hadron Collider (LHC) explore QCD under the most extreme conditions on Earth. These heavy-ion collisions recreate the quark–gluon plasma (QGP): the hottest and densest fluid ever studied in the laboratory. In contrast to normal nuclear matter, the QGP is a state where quarks and gluons are not confined inside hadrons. It is speculated that the universe was in a QGP state around one millionth of a second after the Big Bang.
The ALICE experiment was designed to study the QGP at LHC energies. It was operated during LHC Runs 1 and 2, and has carried out a broad range of measurements to characterise the QGP and to study several other aspects of the strong interaction. In a recent review, highlights of which are described below, the ALICE collaboration takes stock of its first decade of QCD studies at the LHC. The results from these studies include a suite of observables that reveal a complex evolution of the near-perfect QGP liquid that emerges in high-temperature QCD. ALICE measurements also demonstrate that charm quarks equilibrate extremely quickly within this liquid, and are able to regenerate QGP-melted “charmonium” particle states. ALICE has extensively mapped the QGP opaqueness with high-energy probes, and has directly observed the QCD dead-cone effect in proton–proton collisions. Surprising QGP-like signatures have also been observed in rare proton–proton and proton–lead collisions.
Circa 1999 this can lead to genetic editing that allows people to handle even a nuclear fallout level of radiation and even allow them to handle outer space better.
Rockville, MD — No, it’s not the cockroach, but rather a strain of pink bacteria that can survive 1.5 million rads of gamma irradiation — a dose 3,000 times the amount that would kill a human. This dose of radiation shreds the bacteria’s genome into hundreds of pieces. The organism’s remarkable ability to repair this DNA damage completely in a day and go on living offers researchers tantalizing clues to better understanding the mechanism of cellular repair. Advances in this area could in turn improve our understanding of cancer which is frequently caused by unrepaired DNA damage. Genetically engineering the microbe could lead to improved ways to cleanup pollution and to new industrial processes.
U.S. Department of Energy-funded researchers at The Institute for Genomic Research (TIGR) describe the complete genetic sequence of the bacteria Deinococcus radiodurans in the November 19 issue of Science.
“This is a significant accomplishment,” Secretary of Energy Bill Richardson said. “The Department of Energy began microbial genome work to support bold science and to help meet our unique environment and energy mission needs. Besides the insights into the way cells work, this new research may help provide a new safe and inexpensive tool for some of the nation’s most difficult cleanup challenges.”
He and his co-authors took four well-established computer vision models, which are commonly used for applications like autonomous driving, and trained them to tackle this problem.
Simulating blobs
To train these models, they created a vast dataset of synthetic video clips that captured the blobs’ random and unpredictable nature.
A type 1 civilization on the Kardashev scale manages to take advantage of 100% of the energy produced by its planet, control the climate, move continents and even change its planet’s rotation. In this sense, how long does the human race lack to become a type 1 civilization? Are we close to achieving it, or are we still far away? Ready, let’s start! “Introduction“ The level of technological development of any civilization can be measured mainly by the amount of energy they need. But, it also encompasses the management of that energy and how they use it to develop and grow on their home planet. Following Kardashev’s definition, a Type I civilization is capable of storing and using all the energy available on its planet; this includes all known electricity generation methods, as well as those that depend on the elements available on the planet, nuclear fusion and fission, geothermal energy, as well as that which they can collect from their star without leaving the planet. The human race has not yet reached this level of development, but will we ever reach it? And if so, when will we achieve it? Previously we already made a series of 3 videos in which we address the three types of civilizations that exist according to the Kardashev scale. “Enter here images of the series on the scale of Kardashev.“ But today, we will focus on analyzing why the human race has not yet managed to become a type 1 civilization and how far we need to become one. The Great Filter.
- “If You happen to see any content that is yours, and we didn’t give credit in the right manner please let us know at [email protected] and we will correct it immediately”
“Some of our visual content is under an Attribution-ShareAlike license. (https://creativecommons.org/licenses/) in its different versions such as 1.0, 2.0, 30, and 4.0 – permitting commercial sharing with attribution given in each picture accordingly in the video.”
Credits: Ron Miller, Mark A. Garlick / MarkGarlick.com. Credits: NASA/Shutterstock/Storyblocks/Elon Musk/SpaceX/ESA/ESO/ Flickr.
A fascinating new look at the patents and defense projects in the US Military and its hopefully fusion powered future. (FUSION POWER: Only 20 years away for the last 40 years!! 😉)
Back in 2018, Lockheed Martin filed a patent for something it called a “plasma confinement system” — a device small enough to fit inside the fuselage of an F-16 Fighting Falcon that is capable of managing internal temperatures 10 times hotter than the center of the sun.
This scalable device was designed to play a vital role in containing an approach to power production that some still consider science fiction: nuclear fusion. Now, recent advancements in the field are making fusion power look not just possible, but potentially even feasible. In the coming years, fusion could not only change everything about the way the world fights wars… it could even change the way humanity approaches conflict itself.
And it all might start within the shadowy confines of the Pentagon’s black budget.
DOW will install advanced nuclear reactors at one of its Gulf Coast sites to provide low carbon power and process heat for its chemicals production.
Dow signed a letter of intent with reactor developer X-energy, and plans to buy a minority stake in the company. The plan is to deploy X-energy’s Xe-100 high-temperature gas-cooled reactor technology at one of Dow’s Gulf Coast complexes, with operations expected to begin by 2030.
“Advanced small modular nuclear technology is going to be a critical tool for Dow’s path to zero-carbon emissions,” said Dow CEO Jim Fitterling. “This is a great opportunity for Dow to lead our industry in carbon neutral manufacturing by deploying next-generation nuclear energy.”
Protecting People, Society & Environment — Lydie Evrard, Deputy Director General; Head, Department of Nuclear Safety & Security, International Atomic Energy Agency (IAEA)
Ms. Evrard’s department focuses on the protection of people, society and the environment from the harmful effects of ionizing radiation, whether the cause is an unsafe act or a security breach, and her team aims to provide a strong, sustainable and visible global nuclear safety and security framework. Her department was created in 1996 as a response to the Chernobyl nuclear accident.
Prior to joining the IAEA, Ms. Evrard held the role of Commissioner at the French Nuclear Safety Authority (ASN).
Ms. Evrard started her career in the field of engineering, joining the French Ministry of Energy as an engineer and she has worked extensively in the regulatory field over the last 25 years in positions including as Unit Head at the Industry, Research and the Environment Direction of France’s Ministry of the Environment (Paris Region); Deputy Head of the Paris Region Division of the Nuclear Safety Authority (ASN) and subsequently Head of the Authority’s waste, decommissioning, fuel cycle facilities, research facilities and contaminated soils remediation Department. At the ASN, Ms. Evrard handled both radiation protection and nuclear safety issues. In particular, she led, together with counterparts at the Ministry of Energy, the 2013–2015 national plan for the management of radioactive materials and waste and coordinated the stress tests performed on research and fuel cycle facilities, following the Fukushima Daiichi accident.