БЛОГ

Archive for the ‘nuclear energy’ category: Page 60

Mar 14, 2022

New record temperature for spherical tokamak

Posted by in categories: government, nuclear energy

Tokamak Energy, based near Oxford, UK, has demonstrated a world-first with its privately-funded ST40 spherical tokamak. The reactor achieved a plasma temperature of 100 million degrees Celsius, the threshold required for commercial fusion energy.

At nearly seven times hotter than the centre of the Sun, this is by far the highest temperature ever generated within a spherical tokamak and also by any privately-funded tokamak. The ST40 had previously achieved a temperature of 15 million degrees in June 2018. While several government laboratories have reported plasma temperatures above 100 million degrees in conventional tokamaks, this milestone has been achieved in just five years, for a cost of less than £50m ($70m) and in a much more compact fusion device. This provides further proof that spherical tokamaks are a viable route to the delivery of clean, secure, low cost, scalable fusion energy.

Mar 14, 2022

Using pump lasers to create plasma lenses that focus at very high intensity levels

Posted by in categories: nuclear energy, particle physics

A team of researchers from Lawrence Livermore National Laboratory, the University of California at Berkeley and Princeton University has developed plasma-based techniques to build a lens for laser beams with petawatt-scale power. In their paper published in the journal Physical Review Letters, the group describes the two techniques they developed.

Physicists conducting work with and fusion research efforts are hopeful that other researchers will build lasers that are more powerful than those currently available. Such work has been held up by the solid-state optics technology used to create lasers—giving them more power would damage the parts used to generate the laser, making them useless. In this new effort, the researchers noted that other researchers have found that plasma can be used to create optic components such as amplifiers and mirrors. They wondered if the same might be true for the kind of lens needed to produce extremely powerful laser beams. They came up with a concept that involved inducing patterns of high and in a given plasma. Light moving through it, they note, would experience a based on the density of the plasma.

The researchers did not actually build such a laser, but instead, proposed two ways that it might be built. The first method involved firing two pump lasers at a gas sample. The first laser ionized the gas into a plasma, while the second did not. The result was a plasma with a bulls-eye configuration of high and low-density plasma rings, which could be used as a laser lens.

Mar 13, 2022

Tokamak Energy achieves record-breaking plasma temperature of 100M degrees

Posted by in categories: government, nuclear energy

If nuclear fusion reaction – the process that powers the Sun and other stars – could be used on a consistent basis on Earth, it would be a source of virtually unlimited clean energy. But there are still a lot of obstacles to overcome.

U.K.-based nuclear fusion firm Tokamak Energy has demonstrated a world-first with its privately-funded ST40 spherical tokamak, achieving a plasma temperature of 100 million degrees Celsius. This threshold is necessary for the future deployment of commercially successful fusion power. According to the company, this is by far the highest temperature ever achieved in a spherical tokamak and by any privately funded tokamak.

Several government laboratories have reported plasma temperatures above 100 million degrees in conventional tokamaks, including South Korea’s KSTAR reactor and China’s “artificial sun” EAST tokamak reactor. However, Tokamak Energy highlights that its milestone has been achieved in just five years, or a cost of less than £50m ($70m), in a much more compact fusion device. This achievement further substantiates spherical tokamaks as the optimal route to the delivery of clean, secure, low-cost, scalable, and globally deployable commercial fusion energy.

Mar 11, 2022

Tokamak Energy moves closer to commercial fusion: 100M degree plasma a world record for a spherical tokamak

Posted by in categories: government, nuclear energy

OXFORD, England 0, March 10, 2022 /PRNewswire/ — Tokamak Energy has demonstrated a world-first with its privately-funded ST40 spherical tokamak, achieving a plasma temperature of 100 million degrees Celsius, the threshold required for commercial fusion energy.

This is by far the highest temperature ever achieved in a spherical tokamak and by any privately funded tokamak. While several government laboratories have reported plasma temperatures above 100M degrees in conventional tokamaks, this milestone has been achieved in just five years, for a cost of less than £50m ($70m), in a much more compact fusion device. This achievement further substantiates spherical tokamaks as the optimal route to the delivery of clean, secure, low cost, scalable and globally deployable commercial fusion energy.

Mar 7, 2022

Scientists confirm thermonuclear fusion in a sheared-flow Z-pinch device

Posted by in categories: computing, nuclear energy, physics

In findings that could help advance another “viable pathway” to fusion energy, research led by Lawrence Livermore National Laboratory (LLNL) physicists has proven the existence of neutrons produced through thermonuclear reactions from a sheared-flow stabilized Z-pinch device.

The researchers used advanced computer modeling techniques and diagnostic measurement devices honed at LLNL to solve a decades-old problem of distinguishing neutrons produced by from ones produced by ion beam-driven instabilities for plasmas in the magneto-inertial fusion regime.

While the team’s previous research showed neutrons measured from sheared-flow stabilized Z-pinch devices were “consistent with thermonuclear production, we hadn’t completely proven it yet,” said LLNL physicist Drew Higginson, one of the co-authors of a paper recently published in Physics of Plasmas.

Mar 7, 2022

Powerful New Magnet May Lead to a Fusion Energy Future Sooner Than Later

Posted by in categories: futurism, nuclear energy

The superconducting magnet seen here could be the key ingredient in finally producing a commercial fusion reactor.


The magnet will be deployed in the SPARC tokamak developed by MIT which is currently under construction with a 2025 completion date.

Mar 7, 2022

Local nuclear reactor helps scientists catch and study neutrinos

Posted by in categories: nuclear energy, particle physics

A nuclear reactor at an Illinois energy plant is helping University of Chicago scientists learn how to catch and understand the tiny, elusive particles known as neutrinos.

At Constellation’s (formerly Exelon) Dresden Generating Station in Morris, Illinois, the team took the first measurements of coming off a with a tiny detector. These particles are extremely hard to catch because they interact so rarely with matter, but power reactors are one of the few places on Earth with a high concentration of them.

“This was an exciting opportunity to benefit from the enormous neutrino production from a reactor, but also a challenge in the noisy industrial environment right next to a reactor,” said Prof. Juan Collar, a particle physicist who led the research. “This is the closest that neutrino physicists have been able to get to a commercial reactor core. We gained unique experience in operating a detector under these conditions, thanks to Constellation’s generosity in accommodating our experiment.”

Mar 4, 2022

Selecting the right structural materials for fusion reactors

Posted by in categories: chemistry, nuclear energy, quantum physics

Do two promising structural materials corrode at very high temperatures when in contact with “liquid metal fuel breeders” in fusion reactors? Researchers of Tokyo Institute of Technology (Tokyo Tech), National Institutes for Quantum Science and Technology (QST), and Yokohama National University (YNU) now have the answer. This high-temperature compatibility of reactor structural materials with the liquid breeder—a lining around the reactor core that absorbs and traps the high energy neutrons produced in the plasma inside the reactor—is key to the success of a fusion reactor design.

Fusion reactors could be a powerful means of generating clean electricity, and currently, several potential designs are being explored. In a fusion , the fusion of two nuclei releases massive amounts of energy. This energy is trapped as heat in a “breeding blanket” (BB), typically a liquid lithium alloy, surrounding the . This heat is then used to run a turbine and generate electricity. The BB also has an essential function of fusion fuel breeding, creating a closed fuel cycle for the endless operation of the reactors without fuel depletion.

The operation of a BB at extremely high temperatures over 1,173 K serves the attractive function of producing hydrogen from water, which is a promising technology for realizing a carbon-neutral society. This is possible because the BB heats up to over 1,173 K by absorbing the energy from the reaction. At such temperatures, there is the risk of structural materials in contact with the BB becoming corroded, compromising the safety and stability of the reactors. It is thus necessary to find structural materials that are chemically compatible with the BB material at these temperatures.

Mar 3, 2022

The “man-made sun” is a fusion energy reactor that can sustain temperatures of 70 million degrees Celsius for short periods of time

Posted by in category: nuclear energy

Feb 26, 2022

Chernnobyl fungus feeds on nuclear radiation

Posted by in categories: biotech/medical, nuclear energy

😀 😍 circa 2018.


You know Chernobyl, right? The place of the biggest nuclear accident in the world? The are is so radioactive nobody lives in the vicinity anymore, and nearby plants are suffering major amounts of radiation. However, not everybody is sad about this event; a type of fungi (mushrooms) possess an ability beyond imagination: they can take the lethal radiation and use it as a source of energy to feed and grow. Researchers have called them radiotrophic fungus.

For some 500 million years, fungi have been inhabiting this planet, feeding on whatever they could finding, filling every biological niche they could find. But who could have actually guessed that they could feed on nuclear radiation? Researchers from the Albert Einstein College of Medicine (AEC) had a hunch, and they investigated it to test. They first got the idea after reading that samples brought from Chernobyl were filled with some black fungi growing on it.

Page 60 of 138First5758596061626364Last