Toggle light / dark theme

Tensions are flaring between the powers of the world evoking many to ponder the worst. Yet some are already wondering how to manage a path to peace. Looks like that consideration needs a bit more work! Watch and find out!

Support my channel by clicking the links below (or copy and paste in your browser) and shopping with my partner programs:
See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.
Awesome deals for long term food supplies!
Green Gregs has teamed up with True Leaf Market to bring you a great selection of seed for your spring planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K
To join Green Greg’s Tribe movement email: [email protected].
Put Tribe in the Title.
To join the Freedom Restoration Foundation (FRF) email: [email protected].
Put Freedom in the Title.
FRF On FaceBook: https://www.facebook.com/groups/1017608155367475
FRF On MeWe: https://mewe.com/group/5f809034e1276c18d7f3497d.
Buy worms at: Shutting down temporarily (www.GreenGregs.com will be back)

Here’s a riddle: What do the Moon, nuclear weapons, clean energy of the future, terrorism, and lung disease all have in common?

The answer is helium-3, a gas that’s extremely rare on Earth but 100 million times more abundant on the Moon.


The capability to show anatomic details of the lungs and airways, and the ability to display functional imaging as a patient breathes, makes helium-3 MRI far better than the standard method of testing lung function. Called spirometry, this method tells physicians how the lungs function overall, but does not home in on particular areas that may be causing a problem. Plus, spirometry requires patients to follow instructions and hold their breath, so it is not great for testing young children with pulmonary disease.

Over the past several years, researchers have been developing MRI for lung testing using other hyperpolarized gases. The main alternative to helium-3 is xenon-129. Over the years, researchers have learned to overcome certain disadvantages of the latter, such as its potential to put patients to sleep. Since helium-3 provides the strongest signal, though, it is still the best gas for MRI studies in many lung conditions.

Wow…even I was amazed by these stats and timeline… and I am an unapologetic optimist and futurist who wants to live forever lol.


This video is a synopsis of our research report “Rethinking Energy 2020–2030: 100% Solar, Wind, and Batteries is Just the Beginning” that was published on October 27th, 2020 and is available for download free of charge from our RethinkX website https://www.rethinkx.com/energy.

We are on the cusp of the fastest, deepest, most profound disruption of the energy sector in over a century. Like most disruptions, this one is being driven by the convergence of several key technologies whose costs and capabilities have been improving on consistent and predictable trajectories – namely, solar photovoltaic power, wind power, and lithium-ion battery energy storage.

In a feat requiring perseverance, world-leading technology, and no small amount of caution, scientists have used intense X-rays to inspect irradiated nuclear fuel. The imaging, led by researchers at Purdue University and conducted at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, revealed a 3D view of the fuel’s interior structure, laying the groundwork for better nuclear fuel designs and models.

Until now, examinations of uranium fuel have been limited to mostly surface microscopy or to various characterization techniques using mock versions that possess little radioactivity. But scientists want to know at a deeper level how the material changes as it undergoes fission inside a . The resulting insights from this study, which the Journal of Nuclear Materials published in August 2020, can lead to that function more efficiently and cost less to develop.

To get an interior view of the uranium-zirconium fuel studied, the researchers sectioned off a bit of used fuel small enough to be handled safely—a capability developed only within the last seven years. Then, to see inside this tiny metallic sample, they turned to the Advanced Photon Source (APS), a DOE Office of Science User Facility located at Argonne.

On the path to writing his Ph.D. dissertation, Lucio Milanese made a discovery—one that refocused his research, and will now likely dominate his thesis.

Milanese studies , a gas-like flow of ions and electrons that comprises 99 percent of the visible universe, including the Earth’s ionosphere, interstellar space, the , and the environment of stars. Plasmas, like other fluids, are often found in a turbulent state characterized by chaotic, unpredictable motion, providing multiple challenges to researchers who seek to understand the cosmic universe or hope to harness burning plasmas for fusion energy.

Milanese is interested in what physicist Richard Feynman called “the most important unsolved problem of classical physics”—turbulence. In this case, the focus is plasma turbulence, its nature and structure.

Circa 2020 radiationless laser.


One of the world’s leading specialists in laser fusion, the Australian physicist Prof. Heinrich Hora, has proposed a new type of nuclear reactor which promises to provide highly-efficient, radioactivity-free generation of electric power, with virtually unlimited reserves of fuel. The design uses ultra-high-power, ultra-short-pulsed lasers to trigger fusion reactions between nuclei of hydrogen and boron. Hora believes that a prototype of his reactor could be running within the decade.

In the previous installments of this series, Jonathan Tennenbaum introduced readers to the new reactor concept and its fascinating scientific and technological background.

It is fitting to conclude this series with an interview Tennenbaum conducted in March this year with Heinrich Hora.