Archive for the ‘nuclear energy’ category: Page 9

Jun 24, 2020

Severe thunderstorm warning issued for parts of St. Lucie and Martin counties

Posted by in categories: climatology, nuclear energy

The National Weather Service in Melbourne has issued a severe thunderstorm warning for southeastern St. Lucie County and northeastern Martin County until 10 p.m.

At 9:18 p.m., a severe thunderstorm was located 7 miles north of Indiantown, moving northeast at 15 mph.

Locations impacted include Port Saint Lucie, Walton, Stuart, Palm City and Saint Lucie Nuclear Power Plant.

Continue reading “Severe thunderstorm warning issued for parts of St. Lucie and Martin counties” »

Jun 23, 2020

Nuclear waste shipment leaves Germany for Russia

Posted by in category: nuclear energy

The waste will reportedly be moved by sea and rail to a plant in the Urals.

Urenco told the BBC its uranium would be further enriched in Russia and the process met environmental standards.

But environmental activists have long been concerned that Russia may become a “dumping ground” for radioactive waste from power plants.

Jun 19, 2020

Build a Nuclear Fusor | Make

Posted by in category: nuclear energy

Learn how to build a nuclear fusor that has an eerie purple-blue glow emanating from the reactor. Careful, as the project uses high voltages.

Jun 17, 2020

These Tiny Neutron Generators Could Pave the Way for Fusion

Posted by in categories: biotech/medical, nuclear energy

The Madison, Wisconsin-based startup Phoenix has scouted a team of nuclear elites for a new frontier: small reactors that can revolutionize medical imaging, munitions scanning, and even non-destructive testing for quality assurance.

And in the longer term, scientists say training people to run neutron generators helps to familiarize and speed up the future of nuclear fusion.

Jun 16, 2020

France’s $21 billion nuclear fusion reactor could revolutionize energy

Posted by in category: nuclear energy

This would forever change our world.

Jun 12, 2020

Black hole model reveals star collapse without bright explosion

Posted by in categories: cosmology, nuclear energy, physics

A team of scientists, including Chief Investigator Ilya Mandel from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) at Monash University, recently studied what happens to rotating massive stars when they reach the end of their lives.

Stars produce energy by fusing lighter elements into heavier ones in their core: hydrogen into helium, then helium into carbon, oxygen, and so on, up to . The energy produced by this also provides pressure support inside the star, which balances the force of gravity and allows the star to remain in equilibrium.

This process stops at iron. Beyond iron, energy is required to sustain fusion rather than being released by fusion. A heavy iron star core contracts under gravity, creating a neutron star, or if it is heavy enough, a black hole. Meanwhile, the outer layers of the star explode in a brilliant flash, observable as a supernova. However, some massive stars seem to completely disappear without any explosion. Theories suggest that these massive stars completely collapse into , but is that possible?

Jun 9, 2020

Novel photovoltaics generate electrical power from thermal sources

Posted by in categories: chemistry, nuclear energy

Devices based on photon-assisted tunnelling could harvest energy from nuclear power stations, chemical manufacturing facilities and other sources of waste heat.

Jun 8, 2020

Transformational Challenge Nuclear Reactor: Microreactor Built Using 3D Printing

Posted by in categories: 3D printing, nuclear energy

At the Department of Energy Manufacturing Demonstration Facility at ORNL, this part for a scaled-down prototype of a reactor was produced for industry partner Kairos Power. Credit: Kairos Power.

Jun 3, 2020

73 Years After Its Debut, The Doomsday Clock Is 100 Seconds From Midnight

Posted by in categories: existential risks, military, nuclear energy

73 years ago, the same scientists who had helped to begin the atomic age set a “doomsday clock” for humanity. It first appeared on the cover of the June 1947 issue of the Bulletin of the Atomic Scientists as a dire warning about the nuclear rivalry between the U.S. and the Soviet Union. At that moment, the Bulletin estimated that we stood at about 7 minutes to midnight, which represented nuclear apocalypse.

The Doomsday Clock wasn’t – and still isn’t – a precise countdown to the end of all things. It’s a metaphor for how dangerous the global situation seems to be at a given moment, in the very well-informed but also subjective opinion of the Bulletin’s board of directors. In June 1947, things looked dire. The U.S. had dropped a pair of atomic bombs on Japan less than two years before; when the Bulletin of the Atomic Scientists first published the Doomsday Clock image, researchers were still studying the aftermath of those bombs. Meanwhile, the Soviet Union was hard at work on its own atomic program, and was just a couple of years away from testing its first atomic bomb in 1949.

Through the Cold War and in the decades since, the clock’s minute hand has moved about two dozen times. In September 1953, it stood at two minutes to midnight, following Russia’s August 1953 hydrogen bomb test – which in turn had followed a U.S. hydrogen bomb test in November 1952. Those tests meant the two feuding superpowers each had much more powerful new weapons with which to destroy each other; the tests also heightened the sense of life-or-death competition that made it more likely that someone would decide to use those terrible new bombs.

Continue reading “73 Years After Its Debut, The Doomsday Clock Is 100 Seconds From Midnight” »

Jun 1, 2020

ARC reactor design uses superconducting magnets to draw fusion power closer

Posted by in categories: bioengineering, military, nuclear energy, particle physics

Circa 2015

Fusion power can seem a bit like the last bus at night; it’s always coming, but never arrives. MIT is working to change that with a new compact tokamak fusion reactor design based on the latest commercially available magnetic superconductor technology. The ARC (affordable, robust, compact) reactor design promises smaller, cheaper reactors that could make fusion power practical within 10 years.

A commercially viable fusion reactor has been the Holy Grail of engineering since the 1950s, with the potential to turn almost all other major electricity sources into an historical footnote overnight. If perfected, it would essentially be an inexhaustible source of power, impacting on almost every aspect of life, from the environment to global politics. The trick is making it practical.

Continue reading “ARC reactor design uses superconducting magnets to draw fusion power closer” »

Page 9 of 53First678910111213Last