БЛОГ

Archive for the ‘particle physics’ category: Page 118

Oct 15, 2018

Scientists achieve first ever acceleration of electrons in plasma waves

Posted by in category: particle physics

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) near Geneva, Switzerland is said to be the largest particle accelerator in the world. The accelerator occupies a tunnel 27 kilometers in circumference as deep as 175 meters beneath the French-Swiss border. The facility has helped scientists uncover the Higgs boson, the last particle predicted by the Standard Model, in 2012.

Read more

Oct 15, 2018

The state of the Early Universe: The beginning was fluid – Niels Bohr Institute — University of Copenhagen

Posted by in category: particle physics

The particle physicists at the Niels Bohr Institute have obtained new results, working with the LHC, replacing the lead-ions, usually used for collisions, with Xenon-ions. Xenon is a “smaller” atom with fewer nucleons in its nucleus. When colliding ions, the scientists create a fireball that recreates the initial conditions of the universe at temperatures in excess of several thousand billion degrees. In contrast to the Universe, the lifetime of the droplets of QGP produced in the laboratory is ultra short, a fraction of a second (In technical terms, only about 10-22 seconds). Under these conditions the density of quarks and gluons is very large and a special state of matter is formed in which quarks and gluons are quasi-free (dubbed the strongly interacting QGP). The experiments reveal that the primordial matter, the instant before atoms formed, behaves like a liquid that can be described in terms of hydrodynamics.

How to approach “the moment of creation”

“One of the challenges we are facing is that, in heavy ion collisions, only the information of the final state of the many particles which are detected by the experiments are directly available – but we want to know what happened in the beginning of the collision and first few moments afterwards”, You Zhou, Postdoc in the research group Experimental Subatomic Physics at the Niels Bohr Institute, explains. “We have developed new and powerful tools to investigate the properties of the small droplet of QGP (early universe) that we create in the experiments”. They rely on studying the spatial distribution of the many thousands of particles that emerge from the collisions when the quarks and gluons have been trapped into the particles that the Universe consists of today. This reflects not only the initial geometry of the collision, but is sensitive to the properties of the QGP. It can be viewed as a hydrodynamical flow.

Continue reading “The state of the Early Universe: The beginning was fluid – Niels Bohr Institute — University of Copenhagen” »

Oct 13, 2018

A nano stress reliever for sepsis

Posted by in categories: nanotechnology, neuroscience, particle physics

A peroxide scavenger nanoparticle reduces systemic inflammation in mouse models.

With 19 million cases per year worldwide, sepsis is one of the most life-threatening conditions in the intensive care unit. However, to date, there is no specific and effective treatment. Oxidative stress has been shown to play a major role in sepsis pathogenesis by altering the systemic immune response to infections, which, in turn, may lead to multiorgan dysfunction and cognitive impairment. Here, Rajendrakumar et al. developed a nanoparticle-based peroxide scavenger treatment for reducing oxidative stress during sepsis.

To produce the nanoassembly, the authors first developed a water-soluble nanoparticle core containing an active peroxide scavenger and a protein that stabilizes the scavenger and improves its biocompatibility. The nanoparticle core was then coated with a polymer material conjugated with mannose to help the final nanoassembly target inflammatory immune cells through the mannose receptor on the immune cell surfaces. The authors first confirmed in cell cultures that the nanoassembly can selectively reduce hydrogen peroxide–mediated free radical production with minimal toxicity. In cultures, immune cells demonstrated enhanced intracellular uptake of the particles and reduced production of inflammatory markers during activation. To demonstrate the therapeutic efficacy in vivo, the authors carried out three sets of animal studies. In the first set, the nanoassembly was shown to reduce locally induced tissue inflammation and prevent inflammatory immune cell infiltration.

Continue reading “A nano stress reliever for sepsis” »

Oct 12, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization

Posted by in categories: materials, particle physics

Since the 2003 discovery of the single-atom-thick carbon material known as graphene, there has been significant interest in other types of 2-D materials as well.

Read more

Oct 12, 2018

A novel topological insulator

Posted by in categories: materials, particle physics

For the first time, physicists have built a unique topological insulator in which optical and electronic excitations hybridize and flow together. They report their discovery in Nature.

Topological insulators are materials with very special properties. They conduct electricity or light only on their surface or edges, not the interior. This unusual characteristic could provide technical innovations, and topological insulators have been the subject of intense global research for several years.

Physicists of Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, with colleagues from the Technion in Haifa, Israel, and Nanyang Technological University in Singapore have reported their discovery in the journal Nature. The team has built the first “exciton-polariton topological insulator,” a topological insulator operating with both light and simultaneously.

Continue reading “A novel topological insulator” »

Oct 11, 2018

New half-light half-matter particles may hold the key to a computing revolution

Posted by in categories: computing, particle physics

Scientists have discovered new particles that could lie at the heart of a future technological revolution based on photonic circuitry, leading to superfast, light-based computing.

Read more

Oct 10, 2018

The Universe Has A Speed Limit, And It Isn’t The Speed Of Light

Posted by in categories: particle physics, space

Nothing can go faster than the speed of light in a vacuum. But particles in our Universe can’t even go that fast.

Read more

Oct 10, 2018

Scientists forge ahead with electron microscopy to build quantum materials atom

Posted by in categories: particle physics, quantum physics

A novel technique that nudges single atoms to switch places within an atomically thin material could bring scientists another step closer to realizing theoretical physicist Richard Feynman’s vision of building tiny machines from the atom up.

Read more

Oct 9, 2018

Voyager 2 Detects Hints That Interstellar Space Is Nearby

Posted by in categories: particle physics, space

Six years ago, the Voyager 1 spacecraft informed scientists that it had become the first man-made object to enter interstellar space. Now, Voyager 2 has begun to return signs that its own exit from the Solar System could be coming soon.

Two of Voyager 2’s instruments have measured an increase in the number of high-energy particles called cosmic rays hitting the spacecraft, according to a NASA release. Scientists think that the heliosphere, the region of particles and magnetic fields under the Sun’s influence, blocks some cosmic rays. An increase in their rate means that the probe could be nearing the heliopause, the heliosphere’s outer boundary.

Read more

Oct 5, 2018

Researchers Created ‘Quantum Artificial Life’ For the First Time

Posted by in categories: alien life, computing, particle physics, quantum physics

For the first time, an international team of researchers has used a quantum computer to create artificial life—a simulation of living organisms that scientists can use to understand life at the level of whole populations all the way down to cellular interactions.

With the quantum computer, individual living organisms represented at a microscopic level with superconducting qubits were made to “mate,” interact with their environment, and “die” to model some of the major factors that influence evolution.

The new research, published in Scientific Reports on Thursday, is a breakthrough that may eventually help answer the question of whether the origin of life can be explained by quantum mechanics, a theory of physics that describes the universe in terms of the interactions between subatomic particles.

Continue reading “Researchers Created ‘Quantum Artificial Life’ For the First Time” »