Toggle light / dark theme

Scientists visualize magnetic fields at atomic scale with holography electron microscope

A research team from Japan, including scientists from Hitachi, Ltd. (TSE 6,501, Hitachi), Kyushu University, RIKEN, and HREM Research Inc. (HREM), has achieved a major breakthrough in the observation of magnetic fields at unimaginably small scales.

In collaboration with National Institute of Advanced Industrial Science and Technology (AIST) and the National Institute for Materials Science (NIMS), the team used Hitachi’s atomic-resolution holography electron microscope—with a newly developed image acquisition technology and defocus correction algorithms—to visualize the magnetic fields of individual atomic layers within a crystalline solid.

Many advances in , catalysis, transportation, and have been made possible by the development and adoption of high-performance materials with tailored characteristics. Atom arrangement and electron behavior are among the most critical factors that dictate a crystalline material’s properties.

AI Breakthrough in Detecting New Particles at the Large Hadron Collider

One of the primary goals of the Large Hadron Collider (LHC) experiments is to look for signs of new particles, which could explain many of the unsolved mysteries in physics. Often, searches for new physics are designed to look for one specific type of new particle at a time, using theoretical predictions as a guide. But what about searching for unpredicted – and unexpected – new particles?

Sifting through the billions of collisions that occur in the LHC experiments without knowing exactly what to look for would be a mammoth task for physicists. So, instead of combing through the data and looking for anomalies, the ATLAS and CMS collaborations are letting artificial intelligence (AI) streamline the process.

Searching for dark matter with the coldest quantum detectors in the world

One of the greatest mysteries of science could be one step closer to being solved. Approximately 80% of the matter in the universe is dark, meaning that it cannot be seen. In fact, dark matter is passing through us constantly—possibly at a rate of trillions of particles per second.

We know it exists because we can see the effects of its gravity, but experiments to date have so far failed to detect it.

Taking advantage of the most advanced quantum technologies, scientists from Lancaster University, the University of Oxford, and Royal Holloway, University of London are building the most sensitive dark matter detectors to date.

Physicists develop method to detect single-atom defects in semiconductors

One of the challenges of cramming smarter and more powerful electronics into ever-shrinking devices is developing the tools and techniques to analyze the materials that make them up with increasingly intimate precision.

Physicists at Michigan State University have taken a long-awaited step on that front with an approach that combines high-resolution microscopy with ultrafast lasers.

The technique, described in the journal Nature Photonics, enables researchers to spot misfit atoms in semiconductors with unparalleled precision. Semiconductor physics labels these atoms as “defects,” which sounds negative, but they’re usually added to materials on purpose and are critically important to the performance of semiconductors in today’s—and tomorrow’s—devices.

Surprising Vortex Uncovered — Supercomputers Reveal Hidden Secrets of Solar Technology

In the past decade, metal-halide perovskites have rapidly progressed as a semiconductor, surpassing silicon in their ability to convert light into electric current since their initial discovery.

Simulations on TACC’s Frontera and Lonestar6 supercomputers have revealed surprising vortex structures in quasiparticles of electrons and atoms, called polarons, which contribute to generating electricity from sunlight.

This new discovery can help scientists develop new solar cells and LED lighting. This type of lighting is hailed as an eco-friendly, sustainable technology that can reshape the future of illumination.

Single atoms show their true color

One of the challenges of cramming smarter and more powerful electronics into ever-shrinking devices is developing the tools and techniques to analyze the materials that make them up with increasingly intimate precision.

Physicists at Michigan State University have taken a long-awaited step on that front with an approach that combines high-resolution microscopy with ultrafast lasers.

The technique, described in the journal Nature Photonics (“Atomic-scale terahertz time-domain spectroscopy”), enables researchers to spot misfit atoms in semiconductors with unparalleled precision. Semiconductor physics labels these atoms as “defects,” which sounds negative, but they’re usually added to materials on purpose and are critically important to the performance of semiconductors in today’s — and tomorrow’s — devices.

Ultra-Precise Atomic Clock Doubles Previous Accuracy, Could Detect Dark Matter

Time: It bends and warps, or seems to speed up or slow down, depending on your position or perception. So measuring its passing accurately is one of the most fundamental tasks in physics – which could help land us on Mars or even observe dark matter.

Now, physicists at the US National Institute of Standards and Technology (NIST) and the University of Delaware have developed the most accurate and precise atomic clock yet, using a ‘web’ of light to trap and excite a diffuse cloud of cold strontium atoms.

“This clock is so precise that it can detect tiny effects predicted by theories such as general relativity, even at the microscopic scale,” says Jun Ye, a physicist at the NIST’s Joint Institute for Laboratory Astrophysics (JILA) lab at the University of Colorado. “It’s pushing the boundaries of what’s possible with timekeeping.”

High-precision infrared imaging technology reveals the magnetic domain structure of non-collinear antiferromagnets

Non-collinear antiferromagnetic materials, which have a net magnetic moment of nearly zero, yet exhibit significant anomalous transverse transport properties, are considered candidate materials for the next generation of spintronic devices.

The magnetic domain structure of these materials is crucial for information storage. However, magnetic domain imaging for non-collinear antiferromagnetic materials such as Mn3Sn and Mn3Ge has always been a significant challenge in this field of research.

Prof. Dazhi Hou’s team from the University of Science and Technology of China, in with Prof. Yanfeng Guo’s team from ShanghaiTech University, has successfully achieved magnetic domain imaging of Mn3Sn and Mn3Ge using the anomalous Ettingshausen effect and lock-in thermography (LIT) technique. They verified the superiority of this innovative method in simultaneously resolving the magnetic domain structure in both in-plane and out-of-plane directions.

Scientists crack new method for high-capacity, secure quantum communication

Scientists have made a significant breakthrough in creating a new method for transmitting quantum information using particles of light called qudits. These qudits promise a future quantum internet that is both secure and powerful. The study is published in the journal eLight.

Traditionally, is encoded on qubits, which can exist in a state of 0, 1, or both at the same time (superposition). This quality makes them ideal for complex calculations but limits the amount of data they can carry in communication. Conversely, qudits can encode information in higher dimensions, transmitting more data in a single go.

The new technique harnesses two properties of light—spatial mode and polarization—to create four-dimensional qudits. These qudits are built on a special chip that allows for precise manipulation. This manipulation translates to faster data transfer rates and increased resistance to errors compared to conventional methods.

/* */