Toggle light / dark theme

Origami Patterns Solve a Major Physics Riddle

The amplituhedron is a geometric shape with an almost mystical quality: Compute its volume, and you get the answer to a central calculation in physics about how particles interact.

Now, a young mathematician at Cornell University named Pavel (Pasha) Galashin has found that the amplituhedron is also mysteriously connected to another completely unrelated subject: origami, the art of paper folding. In a proof posted in October 2024, he showed that patterns that arise in origami can be translated into a set of points that together form the amplituhedron. Somehow, the way paper folds and the way particles collide produce the same geometric shape.

“Pasha has done some brilliant work related to the amplituhedron before,” said Nima Arkani-Hamed, a physicist at the Institute for Advanced Study who introduced the amplituhedron in 2013 with his graduate student at the time, Jaroslav Trnka. “But this is next-level stuff for me.”

Physicists develop new quantum sensor at the atomic lattice scale

From computer chips to quantum dots—technological platforms were only made possible thanks to a detailed understanding of the used solid-state materials, such as silicon or more complex semiconductor materials. This understanding also includes being able to identify and control irregularities in the crystal lattice of such materials.

If, for example, an atom is missing in the lattice structure of the crystals, a and thus an can become trapped there. Such charge traps generate electromagnetic noise that limits the functionality of these materials. However, it is extremely difficult to locate these charge traps on an atomic scale.

Researchers from the “Integrated Quantum Photonics” group at the Department of Physics at Humboldt-Universität zu Berlin (HU) and the “Joint Lab Diamond Nanophotonics” at the Ferdinand-Braun-Institut, led by Prof. Dr. Tim Schröder, have developed a new sensor that can detect such individual electrical charges more precisely than ever before.

Nobel Prize in Physics 2025

A major question in physics is the maximum size of a system that can demonstrate quantum mechanical effects. This year’s Nobel Prize laureates conducted experiments with an electrical circuit in which they demonstrated both quantum mechanical tunnelling and quantised energy levels in a system big enough to be held in the hand.

Quantum mechanics allows a particle to move straight through a barrier, using a process called tunnelling. As soon as large numbers of particles are involved, quantum mechanical effects usually become insignificant. The laureates’ experiments demonstrated that quantum mechanical properties can be made concrete on a macroscopic scale.

In 1984 and 1985, John Clarke, Michel H. Devoret and John M. Martinis conducted a series of experiments with an electronic circuit built of superconductors, components that can conduct a current with no electrical resistance. In the circuit, the superconducting components were separated by a thin layer of non-conductive material, a setup known as a Josephson junction. By refining and measuring all the various properties of their circuit, they were able to control and explore the phenomena that arose when they passed a current through it. Together, the charged particles moving through the superconductor comprised a system that behaved as if they were a single particle that filled the entire circuit.

Virtual particles: How physicists’ clever bookkeeping trick could underlie reality

A clever mathematical tool known as virtual particles unlocks the strange and mysterious inner workings of subatomic particles. What happens to these particles within atoms would stay unexplained without this tool. The calculations using virtual particles predict the bizarre behavior of subatomic particles with such uncanny accuracy that some scientists think “they must really exist.”

Virtual particles are not real—it says so right in their name—but if you want to understand how real particles interact with each other, they are unavoidable. They are essential tools to describe three of the forces found in nature: electromagnetism, and the strong and weak nuclear forces.

Real particles are lumps of energy that can be “seen” or detected by appropriate instruments; this feature is what makes them observable, or real. Virtual particles, on the other hand, are a sophisticated mathematical tool and cannot be seen. Physicist Richard Feynman invented them to describe the interactions between real particles.

Strontium optical lattice clock exhibits record-high coherence time

Optical lattice clocks are emerging timekeeping devices based on tens of thousands of ultracold atoms trapped in an optical lattice (i.e., a grid of laser light). By oscillating between two distinct quantum states at a particular frequency, these atoms could help to measure time with much higher precision than existing clocks, which would be highly advantageous for the study of various fundamental physical processes and systems.

Researchers at JILA, National Institute of Standards and Technology and University of Chicago recently developed an clock based on strontium atoms that was keeping time with remarkable precision and accuracy. The new strontium , introduced in a paper published in Physical Review Letters, could open new possibilities for research aimed at testing variations in fundamental physics constants and the timing of specific physical phenomena.

“We have been pushing the performance of the optical lattice clock,” Kyungtae Kim, first author of the paper, told Phys.org. “Thanks to a major upgrade from 2019 to 2021, we demonstrated record differential frequency measurement capability, reaching a resolution of gravitational redshift below the 1-mm scale, as well as record accuracy (until this July) as a frequency standard. To push the performance further, one needs to understand and model the current system. This work provides a detailed snapshot of the clock’s current operation.”

Quantum uncertainty captured in real time using femtosecond light pulses

Researchers from the University of Arizona, working with an international team, have captured and controlled quantum uncertainty in real time using ultrafast pulses of light. Their discovery, published in the journal Light: Science & Applications, could lead to more secure communication and the development of ultrafast quantum optics.

At the heart of the breakthrough is “squeezed light,” said Mohammed Hassan, the paper’s corresponding author and associate professor of physics and optical sciences.

In , light is identified by two linked properties that roughly correspond to a particle’s position and intensity—but can never be known with perfect precision, a concept known as uncertainty. The product of these two measurements cannot fall below a certain threshold, much like the fixed amount of air in a balloon, with each measurement representing one side of the balloon.

Third dimension of data storage: Physicists demonstrate first hybrid skyrmion tubes for higher-density quantum computing

Typically, the charge of electrons is used to store and process information in electronics-based devices. In spintronics, the focus is instead on the magnetic moment or on magnetic vortices, so-called skyrmions—the goal is smaller, faster, and more sustainable computers. To further increase storage density, skyrmions will not only be two-dimensional in the future, but will also conquer the third dimension.

Researchers from the Institute of Physics at Johannes Gutenberg University Mainz (JGU) have now succeeded in creating three-dimensional skyrmions, so-called hybrid skyrmion tubes, in synthetic antiferromagnets and have demonstrated for the first time that these skyrmion tubes move differently than two-dimensional skyrmions.

“Three-dimensional skyrmions are of interest for and brain-inspired computing, among other things—here the higher resulting from the third dimension is essential,” says Mona Bhukta from Professor Mathias Kläui’s research group. The results were published on September 26 in Nature Communications.

Matter wave

Schrödinger applied Hamilton’s optico-mechanical analogy to develop his wave mechanics for subatomic particles. [ 67 ] : xi Consequently, wave solutions to the Schrödinger equation share many properties with results of light wave optics. In particular, Kirchhoff’s diffraction formula works well for electron optics [ 29 ] : 745 and for atomic optics. [ 68 ] The approximation works well as long as the electric fields change more slowly than the de Broglie wavelength. Macroscopic apparatus fulfill this condition; slow electrons moving in solids do not.

Fat particles could be key to treating metabolic brain disorders

Evidence challenging the long-held assumption that neuronal function in the brain is solely powered by sugars has given researchers new hope of treating debilitating brain disorders. A University of Queensland study led by Dr. Merja Joensuu and published in Nature Metabolism showed that neurons also use fats for fuel as they fire off the signals for human thought and movement.

“For decades, it was widely accepted that relied exclusively on glucose to fuel their functions in the brain,” Dr. Joensuu said. “But our research shows fats are undoubtedly a crucial part of the neuron’s in the brain and could be a key to repairing and restoring function when it breaks down.”

Dr. Joensuu from the Australian Institute for Bioengineering and Nanotechnology along with lab members Ph.D. candidate Nyakuoy Yak and Dr. Saber Abd Elkader from UQ’s Queensland Brain Institute set out to examine the relationship of a particular gene (DDHD2) to hereditary spastic paraplegia 54 (HSP54).

What if the Universe Remembers Everything? New Theory Rewrites the Rules of Physics

For over a hundred years, physics has rested on two foundational theories. Einstein’s general relativity describes gravity as the curvature of space and time, while quantum mechanics governs the behavior of particles and fields.

Each theory is highly successful within its own domain, yet combining them leads to contradictions, particularly in relation to black holes, dark matter, dark energy, and the origins of the universe.

My colleagues and I have been exploring a new way to bridge that divide. The idea is to treat information – not matter, not energy, not even spacetime itself – as the most fundamental ingredient of reality. We call this framework the quantum memory matrix (QMM).

/* */