БЛОГ

Archive for the ‘particle physics’ category: Page 218

Feb 12, 2023

Tiny black holes can compress Mount Everest into an atom size

Posted by in categories: cosmology, particle physics

These tiny black holes lose mass faster than their massive counterparts, emitting Hawking radiation until they finally evaporate.

One of the most intriguing predictions of Einstein’s general theory of relativity.

When a sufficiently massive star runs out of fuel, it explodes, and the remaining core collapses, leading to the formation of a stellar black hole (ranging from 3 to 100 solar masses).

Continue reading “Tiny black holes can compress Mount Everest into an atom size” »

Feb 11, 2023

A Blast Chiller for the Quantum World

Posted by in categories: particle physics, quantum physics

Through optomechanical experiments, scientists aim to delve into the boundaries of the quantum realm and lay the groundwork for the creation of highly sensitive quantum sensors. In these experiments, everyday visible objects are coupled to superconducting circuits through electromagnetic fields.

To produce functional superconductors, these experiments are conducted inside cryostats at a temperature of around 100 millikelvins. However, this is still far from low enough to truly enter the quantum world. In order to observe quantum effects on large-scale objects, they must be cooled to nearly absolute zero.

Absolute zero is the theoretical lowest temperature on the thermodynamic temperature scale. At this temperature, all atoms of an object are at rest and the object does not emit or absorb energy. The internationally agreed-upon value for this temperature is −273.15 °C (−459.67 °F; 0.00 K).

Feb 11, 2023

A mind-blowing explanation of the speed of light | Michelle Thaller | Big Think

Posted by in categories: information science, particle physics

New videos DAILY: https://bigth.ink.
Join Big Think Edge for exclusive video lessons from top thinkers and doers: https://bigth.ink/Edge.

The only things that travel at the speed of light are photons. Nothing with any mass at all can travel at the speed of light because as it gets closer and closer to the speed of light, its mass increases. And if it were actually traveling at the speed of light, it would have an infinite mass. Light does not experience space or time. It’s not just a speed going through something. All of the universe shifts around this constant, the speed of light. Time and space itself stop when you go that speed.

Continue reading “A mind-blowing explanation of the speed of light | Michelle Thaller | Big Think” »

Feb 11, 2023

How to make a black hole | NASA’s Michelle Thaller | Big Think

Posted by in categories: cosmology, particle physics

How to make a black hole.
New videos DAILY: https://bigth.ink.
Join Big Think Edge for exclusive video lessons from top thinkers and doers: https://bigth.ink/Edge.

There’s more than one way to make a black hole, says NASA’s Michelle Thaller. They’re not always formed from dead stars. For example, there are teeny tiny black holes all around us, the result of high-energy cosmic rays slamming into our atmosphere with enough force to cram matter together so densely that no light can escape.

Continue reading “How to make a black hole | NASA’s Michelle Thaller | Big Think” »

Feb 11, 2023

Scientists Successfully Sent A Particle Back in Time Using A Quantum Computer

Posted by in categories: computing, information science, particle physics, quantum physics, time travel

As fantastic as this may seem this is not an impossible occurrence.


Before Einstein, time travel was just a story, but his calculations led us into the quantum world and gave us a more complicated picture of time. Kurt Godel found that Einstein’s equations made it possible to go back in time. What’s up? None of the ideas about how to go back in time were ever physically possible.

Before sending a particle back in time, scientists from ETH Zurich, Argonne National Laboratory, and Moscow Institute of Physics and Technology asked, Why stick to physical grounds?

Continue reading “Scientists Successfully Sent A Particle Back in Time Using A Quantum Computer” »

Feb 11, 2023

The Atom and the Doctrine of Identity: Quantum Pioneer Erwin Schrödinger on Bridging Eastern Philosophy and Western Science to Illuminate Consciousness

Posted by in categories: neuroscience, particle physics, quantum physics, science

Who was rumored to be a pedophile.


“The over-all number of minds is just one.”

Feb 10, 2023

Quantum Gravity Is the Final Frontier of Physics, and These Scientists Could Prove Its Existence

Posted by in categories: particle physics, quantum physics

A trailblazing experiment could yield results that help prove the existence of a quantum gravity particle.

Feb 10, 2023

MIT Engineers Grow “Perfect” Atom-Thin Materials

Posted by in categories: computing, particle physics

Adhering to Moore’s Law, the number of transistors on a microchip has doubled annually since the 1960s, but this growth is expected to reach its limit as silicon, the foundation of modern transistors, loses its electrical properties when devices made from it dip below a certain size.

Enter 2D materials — delicate, two-dimensional sheets of perfect crystals that are as thin as a single atom.

An atom is the smallest component of an element. It is made up of protons and neutrons within the nucleus, and electrons circling the nucleus.

Feb 9, 2023

Atom-thin walls could smash size, memory barriers in next-gen devices

Posted by in categories: computing, neuroscience, particle physics

For all of the unparalleled, parallel-processing, still-indistinguishable-from-magic wizardry packed into the three pounds of an adult human brain, it obeys the same rule as the other living tissue it controls: Oxygen is a must.

So it was with a touch of irony that Evgeny Tsymbal offered his explanation for a technological wonder—movable, data-covered walls mere atoms wide—that may eventually help computers behave more like a brain.

“There was unambiguous evidence that oxygen vacancies are responsible for this,” said Tsymbal, George Holmes University Professor of physics and astronomy at the University of Nebraska–Lincoln.

Feb 9, 2023

Searching for Ghost Particles with a Mechanical Sensor

Posted by in categories: nanotechnology, particle physics, quantum physics

Researchers have learned much about neutrinos over the past few decades, but some mysteries remain unsolved. For example, the standard model predicts that neutrinos are massless, but experiments say otherwise. One possible solution to this mass mystery involves another group of neutrinos that does not interact directly via the weak nuclear force and is therefore extremely difficult to detect. David Moore of Yale University and his colleagues have proposed a way to search for these so-called sterile neutrinos using a radioactive nanoparticle suspended in a laser beam [1].

Moore and his colleagues suggest levitating a 100-nm-diameter silica sphere in an optical trap and cooling it to its motional ground state. If the nanoparticle is filled with nuclei that decay by emitting neutrinos—such as certain argon or phosphorous isotopes—then electrons and neutrinos zipping from decaying nuclei should give it a momentum kick. By measuring the magnitude of this kick, the team hopes to determine the neutrinos’ momenta. Although most of these neutrinos will be the familiar three neutrino flavors, sterile neutrinos—if they exist—should also occasionally be emitted, producing unexpectedly small momentum kicks. Moore says that monitoring a single nanoparticle for one month would equate to a sterile-neutrino sensitivity 10 times better than that of any experiment tried so far.

Moore and his team are currently working on a proof-of-principle experiment using alpha-emitting by-products of radon, which result in a larger momentum kick. Once the techniques are optimized, they expect that switching to beta-decaying isotopes will let them see heavy sterile neutrinos in the 0.1–1 MeV mass range. Introducing more quantum tricks to manipulate the nanoparticle’s quantum state will make future experiments sensitive to even lighter sterile neutrinos.