БЛОГ

Archive for the ‘particle physics’ category: Page 242

Oct 30, 2022

Something spooky is happening at the edge of the solar system

Posted by in categories: particle physics, space

Just in time for Halloween, scientists have discovered something spooky and strange occurring at the edge of the solar system: The heliopause — the boundary between the heliosphere (the bubble of solar wind encompassing the solar system) and the interstellar medium (the material between the stars) appears to be rippling and creating oblique angles in an unexpected manner.

The general concept that the heliopause changes shape is not new; over the past decade, researchers have determined that it is not static. They made this discovery using data from Voyager 1 and Voyager 2, the only two spacecraft to exit the heliosphere thus far, as well as NASA’s Interstellar Boundary Explorer (IBEX) satellite, which studies the emissions of energetic neutral atoms (ENAs) that are created when solar winds and the interstellar medium interact.

Oct 29, 2022

Study involving CU-Boulder shows fertilizer can be made from sunlight

Posted by in categories: biological, chemistry, food, particle physics

A group of scientists led by the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) in Golden and involving the University of Colorado Boulder has developed a new, eco-friendly method to produce ammonia, the main ingredient of fertilizer, using light.

The researchers discovered that light energy can be used to change dinitrogen (N2), a molecule made of two nitrogen atoms, to ammonia (NH3), a compound of nitrogen and hydrogen. The researchers hope the newly discovered, light-driven chemical process that creates ammonia can lead to future developments that will enhance global agricultural practices while decreasing the dependence of farmers on fossil fuels.

Traditionally there have been two main ways to transform nitrogen, the most common gas in Earth’s atmosphere, for use by living organisms. One is a biological process that occurs when atmospheric nitrogen is “fixed” by bacteria found in the roots of some plants like legumes and then converted to ammonia by an enzyme called nitrogenase.

Oct 29, 2022

Novel thermal phases of topological quantum matter in the lab

Posted by in categories: computing, particle physics, quantum physics

For the first time, a group of researchers from Universidad Complutense de Madrid, IBM, ETH Zurich, MIT and Harvard University have observed topological phases of matter of quantum states under the action of temperature or certain types of experimental imperfections. The experiment was conducted using quantum simulator at IBM.

Quantum simulators were first conjectured by the Nobel Prize laureate Richard Feynman in 1982. Ordinary classical computers are inefficient at simulating systems of interacting quantum particles These new simulators are genuinely quantum and can be controlled very precisely. They replicate other quantum systems that are harder to manipulate and whose physical properties remain very much unknown.

In an article published in the journal Quantum Information, the researchers describe using a with superconducting qubits at IBM to replicate materials known as topological insulators at finite temperature, and measure for the first time their topological quantum phases.

Oct 28, 2022

Watch scientists turn pure water into metal

Posted by in category: particle physics

What if we could create metal made of water? Pure water itself is almost perfect as an insulator. Water found naturally in the world is a perfect conduit for electricity due to the impurities and minerals found within it. But water only becomes “metallic” at extremely high pressures. Now researchers have found a way to do so by metallicizing pure water using certain metals.

The process was first experimented with for a paper researchers published in July of 2021. Now, though, a group of researchers have managed to record the transformation of water into metal and shared the video on YouTube. The transformation is only made possible by bringing pure water into contact with electron-sharing alkali metals.

Continue reading “Watch scientists turn pure water into metal” »

Oct 27, 2022

Atom-Implanted Silicon Waveguides Get an Upgrade

Posted by in categories: computing, particle physics, quantum physics

Improved fabrication methods for qubits made from erbium-doped silicon waveguides give these qubits the key prerequisites for becoming a contender for future quantum computers.

From superconducting circuits to single atoms, there are many quantum-bit—or “qubit”—systems to choose from when building a quantum computer. New to the game are qubits made from individual erbium atoms implanted in silicon waveguides. Each of these qubits can be controlled and measured with telecom-wavelength light, making the platform practical to implement. But the platform has unfavorable properties that have put that implementation on hold. Now Andreas Reiserer of the Max Planck Institute of Quantum Optics in Germany and his colleagues have improved the qubit’s fabrication and detection methods, such that it is viable for near-future use in quantum computing technologies [1]. The results suggest that erbium-doped silicon waveguides could make more promising qubits than previously thought.

One problem with previous erbium-doped silicon waveguides came from the uneven clustering of erbium atoms around impurities in the waveguide. This clustering meant that the erbium atoms had different transition frequencies, making it difficult to simultaneously address multiple atoms and to perform basic operations between them—a necessary component of quantum information processing.

Oct 27, 2022

Inside the Proton, the ‘Most Complicated Thing’ Imaginable

Posted by in category: particle physics

The positively charged particle at the heart of the atom is an object of unspeakable complexity, one that changes its appearance depending on how it is probed. We’ve attempted to connect the proton’s many faces to form the most complete picture yet.

Oct 27, 2022

Brightest-Ever Space Explosion Could Help Explain Dark Matter

Posted by in categories: cosmology, particle physics

A recent gamma-ray burst known as the BOAT — “brightest of all time” — appears to have produced a high-energy particle that shouldn’t exist. For some, dark matter provides the explanation.

Oct 26, 2022

Entanglement-enhanced matter-wave interferometry in a high-finesse cavity

Posted by in categories: mapping, particle physics, quantum physics

Light-pulse matter-wave interferometers exploit the quantized momentum kick given to atoms during absorption and emission of light to split atomic wave packets so that they traverse distinct spatial paths at the same time. Additional momentum kicks then return the atoms to the same point in space to interfere the two matter-wave wave packets. The key to the precision of these devices is the encoding of information in the phase ϕ that appears in the superposition of the two quantum trajectories within the interferometer. This phase must be estimated from quantum measurements to extract the desired information. For N atoms, the phase estimation is fundamentally limited by the independent quantum collapse of each atom to an r.m.s. angular uncertainty \(\Delta {\theta }_{{\rm{SQL}}}=1/\sqrt{N}\) rad, known as the standard quantum limit (SQL)2.

Here we demonstrate a matter-wave interferometer31,32 with a directly observed interferometric phase noise below the SQL, a result that combines two of the most striking features of quantum mechanics: the concept that a particle can appear to be in two places at once and entanglement between distinct particles. This work is also a harbinger of future quantum many-body simulations with cavities26,27,28,29 that will explore beyond mean-field physics by directly modifying and probing quantum fluctuations or in which the quantum measurement process induces a phase transition30.

Quantum entanglement between the atoms allows the atoms to conspire together to reduce their total quantum noise relative to their total signal1,3. Such entanglement has been generated between atoms using direct collisional33,34,35,36,37,38,39 or Coulomb40,41 interactions, including relative atom number squeezing between matter waves in spatially separated traps33,35,39 and mapping of internal entanglement onto the relative atom number in different momentum states42. A trapped matter-wave interferometer with relative number squeezing was realized in ref. 35, but the interferometer’s phase was antisqueezed and thus the phase resolution was above the SQL.

Oct 25, 2022

Researchers create first quasiparticle Bose-Einstein condensate

Posted by in categories: computing, particle physics, quantum physics

Physicists have created the first Bose-Einstein condensate—the mysterious fifth state of matter—made from quasiparticles, entities that do not count as elementary particles but that can still have elementary-particle properties like charge and spin. For decades, it was unknown whether they could undergo Bose-Einstein condensation in the same way as real particles, and it now appears that they can. The finding is set to have a significant impact on the development of quantum technologies including quantum computing.

A paper describing the process of creation of the substance, achieved at temperatures a hair’s breadth from absolute zero, was published in the journal Nature Communications.

Bose-Einstein condensates are sometimes described as the fifth state of matter, alongside solids, liquids, gases and plasmas. Theoretically predicted in the early 20th century, Bose-Einstein condensates, or BECs, were only created in a lab as recently as 1995. They are also perhaps the oddest state of matter, with a great deal about them remaining unknown to science.

Oct 25, 2022

Auroras are responsible for punching holes in the ozone layer

Posted by in categories: particle physics, space

A type of aurora briefly tore a 400 km wide hole in Earth’s ozone layer.

An international team of researchers showed that a certain type of aurora called the “Isolated proton aurora” depletes our atmosphere’s ozone layer. They discovered a nearly 250-mile-wide (400 kilometers) hole in the ozone layer right above where an aurora occurred. Before now, the influence of these particles was only vaguely known. The study is published in Scientific reports.

What causes the auroras?

Continue reading “Auroras are responsible for punching holes in the ozone layer” »