БЛОГ

Archive for the ‘particle physics’ category: Page 262

Aug 29, 2022

A superfast process for nanoscale machining

Posted by in categories: biological, nanotechnology, particle physics

Cutting intricate patterns as small as several billionths of a meter deep and wide, the focused ion beam (FIB) is an essential tool for deconstructing and imaging tiny industrial parts to ensure they were fabricated correctly. When a beam of ions, typically of the heavy metal gallium, bombards the material to be machined, the ions eject atoms from the surface—a process known as milling—to sculpt the workpiece.

Beyond its traditional uses in the semiconductor industry, the FIB has also become a critical tool for fabricating prototypes of complex three-dimensional devices, ranging from lenses that focus light to conduits that channel fluid. Researchers also use the FIB to dissect biological and material samples to image their internal structure.

However, the FIB process has been limited by a trade-off between high speed and fine resolution. On the one hand, increasing the ion current allows a FIB to cut into the workpiece deeper and faster. On the other hand, the increased current carries a larger number of positively charged ions, which electrically repel each other and defocus the beam. A larger, diffuse beam, which can be about 100 nanometers in diameter or 10 times wider than a typical narrow beam, not only limits the ability to fabricate fine patterns but can also damage the workpiece at the perimeter of the milled region. As a result, the FIB has not been the process of choice for those trying to machine many tiny parts in a hurry.

Aug 29, 2022

Scientists are unraveling the mystery of the arrow of time

Posted by in categories: biological, neuroscience, particle physics

The flow of time from the past to the future is a central feature of how we experience the world. But precisely how this phenomenon, known as the arrow of time, arises from the microscopic interactions among particles and cells is a mystery—one that researchers at the CUNY Graduate Center Initiative for the Theoretical Sciences (ITS) are helping to unravel with the publication of a new paper in the journal Physical Review Letters. The findings could have important implications in a variety of disciplines, including physics, neuroscience, and biology.

Fundamentally, the of arises from the second law of thermodynamics: the principle that microscopic arrangements of physical systems tend to increase in randomness, moving from order to disorder. The more disordered a system becomes, the more difficult it is for it to find its way back to an ordered state, and the stronger the arrow of time. In short, the universe’s tendency toward disorder is the fundamental reason why we experience time flowing in one direction.

“The two questions our team had were, if we looked at a particular system, would we be able to quantify the strength of its arrow of time, and would we be able to sort out how it emerges from the micro scale, where cells and interact, to the whole system?” said Christopher Lynn, the paper’s first author and a postdoctoral fellow with the ITS program. “Our findings provide the first step toward understanding how the arrow of time that we experience in emerges from these more microscopic details.”

Aug 27, 2022

Using Jumbo-Sized Atoms And Tiny Lasers, Researchers Have Created ‘Atomic Television’

Posted by in category: particle physics

Scientists have developed an ‘atomic television’ that uses lasers and atom clouds to carry a video signal that meets the traditional 480i resolution (480 horizontal lines) standard.

Just don’t expect it to be installed as part of your home entertainment setup any time soon.

Continue reading “Using Jumbo-Sized Atoms And Tiny Lasers, Researchers Have Created ‘Atomic Television’” »

Aug 27, 2022

New ‘Twisted’ Laser Beam Can Sculpt Ultracold Atoms Into Unusual Shapes

Posted by in category: particle physics

Getting atoms to do what you want isn’t easy – but it’s at the heart of a lot of groundbreaking research in physics.

Creating and controlling the behavior of new forms of matter is of particular interest and an active area of research.

Our new study, published in Physical Review Letters, has uncovered a brand new way of sculpting ultracold atoms into different shapes using laser light.

Aug 26, 2022

Quantum heat pump: A new measuring tool for physicists

Posted by in categories: cosmology, particle physics, quantum physics

Physicists from TU Delft, ETH Zürich and the University of Tübingen have built a quantum scale heat pump made from particles of light. This device brings scientists closer to the quantum limit of measuring radio frequency signals, which may be useful in the hunt for dark matter. Their work will be published as an open-access article in Science Advances on Aug. 26.

If you bring two objects of different temperature together, such as putting a warm bottle of white wine into a cold chill pack, heat usually flows in one direction, from hot (the wine) to cold (the chill pack). And if you wait long enough, the two will both reach the same temperature, a process known in physics as reaching equilibrium: a balance between the heat flow one way and the other.

If you are willing to do some work, you can break this balance and cause heat to flow in the “wrong” way. This is the principle used in your refrigerator to keep your food cold, and in efficient heat pumps that can steal heat from the outside to warm your house. In their publication, Gary Steele and his co-authors demonstrate a quantum analog of a heat pump, causing the elementary quantum particles of light, known as , to move “against the flow” from a hot object to a cold one.

Aug 26, 2022

A faster way to study 2D materials for next-generation quantum and electronic devices

Posted by in categories: particle physics, quantum physics

Two-dimensional materials, which consist of a single layer of atoms, exhibit unusual properties that could be harnessed for a wide range of quantum and microelectronics systems. But what makes them truly special are their flaws.

“That’s where their true magic lies,” said Alexander Weber-Bargioni at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).

Defects down to the atomic level can influence the material’s macroscopic function and lead to novel quantum behaviors, and there are so many kinds of defects that researchers have barely begun to understand the possibilities. One of the biggest challenges in the field is systematically studying these defects at relevant scales, or with atomic resolution.

Aug 25, 2022

Physicists entangle more than a dozen photons efficiently

Posted by in categories: computing, mathematics, particle physics, quantum physics

Physicists at the Max Planck Institute of Quantum Optics have managed to entangle more than a dozen photons efficiently and in a defined way. They are thus creating a basis for a new type of quantum computer. Their study is published in Nature.

The phenomena of the quantum world, which often seem bizarre from the perspective of the common everyday world, have long since found their way into technology. For example, entanglement: a quantum-physical connection between particles that links them in a strange way over arbitrarily long distances. It can be used, for example, in a quantum computer—a computing machine that, unlike a conventional computer, can perform numerous mathematical operations simultaneously. However, in order to use a quantum computer profitably, a large number of entangled particles must work together. They are the for calculations, so-called qubits.

“Photons, the particles of light, are particularly well suited for this because they are robust by nature and easy to manipulate,” says Philip Thomas, a doctoral student at the Max Planck Institute of Quantum Optics (MPQ) in Garching near Munich. Together with colleagues from the Quantum Dynamics Division led by Prof. Gerhard Rempe, he has now succeeded in taking an important step towards making usable for technological applications such as quantum computing: For the first time, the team generated up to 14 entangled photons in a defined way and with high efficiency.

Aug 24, 2022

Physicists Are Unraveling the Mystery of the Arrow of Time

Posted by in categories: biological, neuroscience, particle physics

A new study by theoretical physicists has made progress toward identifying how particles and cells give rise to large-scale dynamics that we experience as the passage of time.

A central feature of how we experience the world is the flow of time from the past to the future. But it is a mystery precisely how this phenomenon, known as the arrow of time, arises from the microscopic interactions among particles and cells. Researchers at the CUNY Graduate Center Initiative for the Theoretical Sciences (ITS) are helping to unravel this enigma with the publication of a new paper in the journal Physical Review Letters. The findings could have important implications in a wide range of disciplines, including physics, neuroscience, and biology.

Fundamentally, the arrow of time emerges from the second law of thermodynamics. This is the principle that microscopic arrangements of physical systems tend to increase in randomness, moving from order to disorder. The more disordered a system becomes, the more difficult it is for it to find its way back to an ordered state, and the stronger the arrow of time. In short, the universe’s propensity toward disorder is the fundamental reason why we experience time flowing in one direction.

Aug 24, 2022

Dark matter could finally reveal itself through self-interactions

Posted by in categories: cosmology, particle physics

One hypothesis for the nature of dark matter is that some of it could be self-interacting, meaning the individual particles interact slightly with one another.

Aug 22, 2022

Atoms Blasted with Fibonacci Laser Produce Two-Dimensional Time

Posted by in categories: computing, particle physics, quantum physics

Exactly like a quasicrystal, this arrangement is ordered without repetition. Similar to a quasicrystal, it’s a single-dimensional representation of a 2-dimensional pattern. As a consequence of the flattening of dimensions, the system is given two time symmetries instead of just one: the system is given another dimension of time that does not exist.

Nevertheless, quantum computers remain extremely complex experimental systems, so it is not yet known whether the benefits of the theory will hold true in actual qubits.

The experientialists tested the theory using Quantinuum’s quantum computer. Periodically and using Fibonacci sequences, laser light was pulsed at the computer’s qubits.