Manipulating anything in the world of quantum physics is tricky, but now, scientists have managed to manipulate quantum light particles that have a strong relationship with each other. The breakthrough sounds a bit obscure, especially if you aren’t studying quantum mechanics yourself, but it’s a huge success that will be fundamental in how scientists study the quantum realm from here forward.
Category: particle physics – Page 265
The Weibel instability is investigated using relativistic intense short laser pulses. A relativistic short laser pulse can generate a sub-relativistic high-density collisionless plasma. By irradiating double parallel planar targets with two relativistic laser pulses, sub-relativistic collisionless counterstreaming plasmas are created. Since the growth rate of the Weibel instability is proportional to the plasma density and velocity, the spatial and temporal scales of the Weibel instability can be much smaller than that from nanosecond large laser facilities. Recent theoretical and numerical studies have revealed that astrophysical collisionless shocks in sub-relativistic regimes in the absence and presence of an ambient magnetic field play essential roles in cosmic ray acceleration. With experimental verification in mind, we discuss the possible experimental models on the Weibel instability with intense short laser pulses. In order to show the experimental feasibility, we perform 2D particle-in-cell simulations in the absence of an external magnetic field as the first step and discuss the optimum conditions to realize the nonlinear evolutions of the Weibel instability in laboratories.
Although neutrinos are produced abundantly in collisions at the Large Hadron Collider (LHC), until now no neutrinos produced in such a way had been detected. Within just nine months of the start of LHC Run 3 and the beginning of its measurement campaign, the FASER collaboration changed this picture by announcing its first observation of collider neutrinos at this year’s electroweak session of the Rencontres de Moriond. In particular, FASER observed muon neutrinos and candidate events of electron neutrinos. “Our statistical significance is roughly 16 sigma, far exceeding 5 sigma, the threshold for a discovery in particle physics,” explains FASER’s co-spokesperson Jamie Boyd.
In addition to its observation of neutrinos at a particle collider, FASER presented results on searches for dark photons. With a null result, the collaboration was able to set limits on previously unexplored parameter space and began to exclude regions motivated by dark matter. FASER aims to collect up to ten times more data over the coming years, allowing more searches and neutrino measurements.
FASER is one of two new experiments situated at either side of the ATLAS cavern to detect neutrinos produced in proton collisions in ATLAS. The complementary experiment, SND@LHC, also reported its first results at Moriond, showing eight muon neutrino candidate events. “We are still working on the assessment of the systematic uncertainties to the background. As a very preliminary result, our observation can be claimed at the level of 5 sigma,” adds SND@LHC spokesperson Giovanni De Lellis. The SND@LHC detector was installed in the LHC tunnel just in time for the start of LHC Run 3.
Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.
Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny size of the atom. However, sending the photon past the atom several times by means of mirrors significantly increases the probability of an interaction.
In order to generate photons, the researchers use artificial atoms, known as quantum dots. These semiconductor structures consist of an accumulation of tens of thousands of atoms, but behave much like a single atom: when they are optically excited, their energy state changes and they emit a photon. “However, they have the technological advantage that they can be embedded in a semiconductor chip,” says Dr. Daniel Najer, who conducted the experiment at the Department of Physics at the University of Basel.
Beaming in a Spin Texture
Posted in materials, particle physics
Researchers use an optical vortex beam to create a stable pattern of electron spins in a thin layer of semiconductor material.
Spin-based electronic, or “spintronic,” devices can benefit from techniques that coax electron spins into static spatial patterns called spin textures. A new experiment demonstrates that an optical vortex—a light beam that carries orbital angular momentum—can generate a stable spin texture in a semiconductor [1]. The research team showed that the vortex generates a pattern of stripes that has potential uses in processing spin information. Previous experiments have optically stimulated these striped textures, but the optical vortex has a structure that approximately overlaps with the stripe pattern, allowing faster spin-texture formation.
The spins of unbound electrons in a material can be aligned by a magnetic field or by polarized light. But as these electrons move—either through diffusion or through conduction—their spins will begin to rotate in response to so-called spin-orbit interactions within the material. The direction and rate of these rotations for any given electron depend on the path that it takes. Thus, two nearby electrons that start out aligned will become misaligned as they move along different paths, even if they arrive at the same destination. So maintaining an electronic spin texture seems like a doomed enterprise.
Graphene is one of the strongest materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010.
Yet, many properties of the material and its cousins are still poorly understood—for the simple reason that the atoms they are made up of are very difficult to observe. A team of researchers from the University of Amsterdam and New York University have now found a surprising way to solve this issue.
Two-dimensional materials, consisting of a hyper-thin single layer of atomic crystal, have attracted a lot of attention recently. This well-deserved attention is mainly due to their unusual properties, very different from their three-dimensional ‘bulk’ counterparts. Graphene, the most famous representative, and many other two-dimensional materials, are nowadays researched intensely in the laboratory.
Researchers have discovered a way to “translate” quantum information between different kinds of quantum technologies, with significant implications for quantum computing, communication, and networking.
The research was published in the journal Nature on Wednesday. It represents a new way to convert quantum information from the format used by quantum computers to the format needed for quantum communication.
Photons—particles of light—are essential for quantum information technologies, but different technologies use them at different frequencies. For example, some of the most common quantum computing technology is based on superconducting qubits, such as those used by tech giants Google and IBM; these qubits store quantum information in photons that move at microwave frequencies.
Today, at the Moriond conference, the ATLAS and CMS collaborations have both presented the observation of a very rare process: the simultaneous production of four top quarks. They were observed using data from collisions during Run 2 of the Large Hadron Collider (LHC).
Both experiments’ results pass the required five-sigma statistical significance to count as an observation—ATLAS’s observation with 6.1 sigma, higher than the expected significance of 4.3 sigma, and CMS’s observation with 5.5 sigma, higher than the expected 4.9 sigma —making them the first observations of this process.
The top quark is the heaviest particle in the Standard Model, meaning it is the particle with the strongest ties to the Higgs boson. This makes top quarks ideal for looking for signs of physics beyond the Standard Model.
Researchers led by Prof. Zhou Wu from the University of Chinese Academy of Sciences (UCAS) and Prof. Sokrates T. Pantelides of Vanderbilt University have pushed the sensitivity of single-atom vibrational spectroscopy to the chemical-bonding-configuration extreme, which is critical for understanding the correlation of lattice vibrational properties with local atomic configurations in materials.
Using a combination of experimental and theoretical approaches, the researchers demonstrated the effect of chemical-bonding configurations and the atomic mass of impurity atoms on local vibrational properties at the single-atom level.
The study was published in Nature Materials.
Get 30% off Blinkist premium and enjoy 2 memberships for the price of 1! Start your 7-day free trial by clicking here: https://www.blinkist.com/arvinash.
REFERENCES:
Where 99% of mass comes from: https://youtu.be/KnbrRhkJCRk.
ElectroWeak Unification: https://youtu.be/u05VK0pSc7I
Symmetry Breaking: https://youtu.be/yzqLHiA0uFI
PATREON:
For Input on Videos, Private messages, Early Viewing, Join Us: https://www.patreon.com/arvinash.
CHAPTERS:
0:00 Sources of mass.
2:33 Blinkist Free Trial.
3:51 Particles are excitations in Fields.
6:09 How Mass comes from interaction with Higgs.
10:42 Why do some particles interact and others don’t?
11:31 How our universe would not exist without Higgs.
SUMMARY:
How does the Higgs give mass to particles? How do elementary particles gain mass? All mass is Energy. 99% of the mass of an atom is contained in the binding energy within the nucleus. But about 1% of your mass is contained in the mass of the subatomic particles that make up the atoms, electrons and quarks.
How do these subatomic particles get an intrinsic mass? This is due to the Higgs Field. To understand how it works, let’s look at the standard model of particle physics.