Toggle light / dark theme

Evidence of high-energy neutrino emission from the galaxy NGC 1,068 has been found by an international team of scientists for the first time. First spotted in 1,780, NGC 1,068, also known as Messier 77, is an active galaxy in the constellation Cetus and one of the most familiar and well-studied galaxies to date. Located 47 million light-years away from us, this galaxy can be observed with large binoculars. The results, to be published today (November 4, 2022) in the journal Science, were shared yesterday in an online scientific webinar that gathered experts, journalists, and scientists from around the globe.

Physicists often refer to the neutrino as the “ghost particle” because they almost never interact with other matter.

The detection was made at the IceCube Neutrino Observatory. This massive neutrino telescope, which is supported by the National Science Foundation, encompasses 1 billion tons of instrumented ice at depths of 1.5 to 2.5 kilometers (0.9 to 1.2 miles) below Antarctica’s surface near the South Pole. This unique telescope explores the farthest reaches of our universe using neutrinos. It reported the first observation of a high-energy astrophysical neutrino source in 2018. The source is a known blazar named TXS 0506+056 located 4 billion light-years away off the left shoulder of the Orion constellation.

With the new observations we are seeing a mixture of particle physics being the new physics governing even long standing laws like gravity. Also that string theory is still alive and well. I think we may never know everything unless we essentially get to a type 5 civilization or beyond.


Finding cannot be explained by classical assumptions.

An international team of astrophysicists has made a puzzling discovery while analyzing certain star clusters. The finding challenges Newton’s laws of gravity, the researchers write in their publication. Instead, the observations are consistent with the predictions of an alternative theory of gravity. However, this is controversial among experts. The results have now been published in the Monthly Notices of the Royal Astronomical Society. The University of Bonn played a major role in the study.

In their work, the researchers investigated the so-called open star clusters, which are loosely bound groups of a few tens to a few hundred stars that are found in spiral and irregular galaxies. Open clusters are formed when thousands of stars are born within a short time in a huge gas cloud. As they “ignite,” the galactic newcomers blow away the remnants of the gas cloud. In the process, the cluster greatly expands. This creates a loose formation of several dozen to several thousand stars. The cluster is held together by the weak gravitational forces acting between them.

Black holes have properties characteristic of quantum particles, a new study reveals, suggesting that the puzzling cosmic objects can be at the same time small and big, heavy and light, or dead and alive, just like the legendary Schrödinger’s cat.

The new study, based on computer modeling, aimed to find the elusive connection between the mind-boggling time-warping physics of supermassive objects such as black holes and the principles guiding the behavior of the tiniest subatomic particles.

Gallery QI — Becoming: An Interactive Music Journey in VR — Opening Night.
November 3rd, 2022 — Atkinson Hall auditorium.
UC San Diego — La Jolla, CA

By Shahrokh Yadegari, John Burnett, Eito Murakami and Louis Pisha.

“Becoming” is the result of a collaborative work that was initiated at the Opera Hack organized by San Diego Opera. It is an operatic VR experience based on a Persian poem by Mowlana Rumi depicting the evolution of human spirit. The audience experiences visual, auditory and tactile impressions which are partly curated and partly generated interactively in response to the player’s actions.

“Becoming” incorporates fluid and reactive graphical material which embodies the process of transformation depicted in the Rumi poem. Worlds seamlessly morph between organic and synthetic environments such as oceans, mountains and cities and are populated by continuously evolving life forms. The music is a union of classical Persian music fused with electronic music where the human voice becomes the beacon of spirit across the different stages of the evolution. The various worlds are constructed by the real-time manipulation of particle systems, flocking algorithms and terrain generation methods—all of which can be touched and influenced by the viewer. Audience members can be connected through the network and haptic feedback technology provides human interaction cues as well as an experiential stimulus.

While the piece is a major artistic endeavor, it also showcases a number of key technologies and streaming techniques for the development of musical content in XR. The spatialization system Space3D, developed at Sonic Arts and implemented to run on advanced GPUs, is capable of creating highly realistic spatial impressions, and recreating the acoustics of the environment based on the virtual models in real-time using advanced multi-processing ray-tracing techniques.

“Becoming” premiered at SIGGRAPH 2022, Immersive Pavilion in Vancouver, Canada in August 2022. Opera America and San Diego Opera showcased an early preview of this work as part of the first Opera Hack presentations in 2020.

Does the Earth make a sound? Yes! and it’s very eerie!
The European Space Agency (ESA) recently released 5 minutes of haunting, crackling audio. Revealing what Earth’s magnetic field sounds like. Called the Magnetosphere, it is generated deep within the Earth’s interior, at its core. It extends out into space, creating a strong protective shield against things such as charged particles zipping out of the Sun, called the solar wind. And Without this powerful magnetic field, Earth would likely be a barren, cold, dry world. The audio clip you are about to experience might sound like the stuff of nightmares, but sit back, relax and listen to the strange creaking, crackling and rumbling of our planet’s protective shield. This is the sound of the Earth’s magnetic field.

Find out more about this audio clip — https://www.esa.int/Applications/Observing_the_Earth/FutureE…etic_field.

Remember to like and subscribe for much more to come! Thanks for watching! V

Want to help support my channel? Then why not buy me a coffee with a Super Thanks? Just click on the love heart below the video, and instantly you will be considered a V101 Legend! V

I’m also on PATREON! You can help support my channel and gain added perks! Join the community and become a V101 member or Patron Today

https://www.youtube.com/channel/UC_MTPqgFSm_8WUWaCHIfUgQ/join.

Research from a team of physicists at the University of New Hampshire is advancing the understanding of how protons, which comprise 95% of the mass of the visible universe, interact with each other. The results provide a benchmark for testing the strong force, one of the four fundamental forces in nature.

“There’s a lot still unanswered about both of those things, the proton and the ,” said David Ruth, Ph.D. candidate in physics and lead author. “This brings us a little bit closer to that understanding. It’s a necessary piece of two very fundamental things in the universe.”

The strong force governs how what’s internal to the atom’s nucleus—neutrons, protons and the quarks and gluons that make them up—bind together. It is the least understood of the four of nature, which include gravity, electromagnetism and the .

Thermodynamic phases governed by the strong nuclear force have been linked together using multiple theoretical tools.

Quantum chromodynamics (QCD) is the theory of the strong nuclear force. On a fundamental level, it describes the dynamics of quarks and gluons. Like more familiar systems, such as water, a many-body system of quarks and gluons can exist in very different thermodynamic phases depending on the external conditions. Researchers have long sought to map the different corners of the corresponding phase diagram. New experimental probes of QCD—first and foremost the detection of gravitational waves from neutron-star mergers—allow for a more comprehensive view of this phase structure than was previously possible. Now Tuna Demircik at the Asia Pacific Center for Theoretical Physics, South Korea, and colleagues have put together models originally used in very different contexts to push forward a global understanding of the phases of QCD [1].

Phase transitions governed by the strong force require extreme conditions such as high temperatures and high baryon densities (baryons are three-quark particles such as protons and neutrons). The region of the QCD phase diagram corresponding to high temperatures and relatively low baryon densities can be probed by colliding heavy ions. By contrast, the region associated with high baryon densities and relatively low temperatures can be studied by observing single neutron stars. For a long time, researchers lacked experimental data for the phase space between these two regions, not least because it is very difficult to create matter under neutron-star conditions in the laboratory. This difficulty still exists, although collider facilities are being constructed that are intended to produce matter at higher baryon densities than is currently possible.