Toggle light / dark theme

An analogue of a tiny, expanding universe has been created out of extremely cold potassium atoms. It could be used to help us understand cosmic phenomena that are exceedingly difficult to directly detect, such as pairs of particles that may be created out of empty space as the universe expands.

Markus Oberthaler at Heidelberg University in Germany and his colleagues cooled more than 20,000 potassium atoms in a vacuum, using lasers to slow them down and lower their temperature to about 60 nanokelvin, or 60 billionths of a degree kelvin above absolute zero.

At this temperature, the atoms formed a cloud about the width of a human hair and, instead of freezing, they became a quantum, fluid-like phase of matter called a Bose-Einstein condensate. Atoms in this phase can be controlled by shining light on them – using a tiny projector, the researchers precisely set the atoms’ density, arrangement in space and the forces they exert on each other.

Quantum chromodynamics (QCD) is one of the pillars of the Standard Model of particle physics. It describes the strong interaction – one of the four fundamental forces of nature. This force holds quarks and gluons – collectively known as partons – together in hadrons such as the proton, and protons and neutrons together in atomic nuclei. Two hallmarks of QCD are chiral symmetry breaking and asymptotic freedom. Chiral symmetry breaking explains how quarks generate the masses of hadrons and therefore the vast majority of visible mass in the universe. Asymptotic freedom states that the strong force between quarks and gluons decreases with increasing energy. The discovery of these two QCD effects garnered two Nobel prizes in physics, in 2008 and 2004, respectively.

High-energy collisions of lead nuclei at the Large Hadron Collider (LHC) explore QCD under the most extreme conditions on Earth. These heavy-ion collisions recreate the quark–gluon plasma (QGP): the hottest and densest fluid ever studied in the laboratory. In contrast to normal nuclear matter, the QGP is a state where quarks and gluons are not confined inside hadrons. It is speculated that the universe was in a QGP state around one millionth of a second after the Big Bang.

The ALICE experiment was designed to study the QGP at LHC energies. It was operated during LHC Runs 1 and 2, and has carried out a broad range of measurements to characterise the QGP and to study several other aspects of the strong interaction. In a recent review, highlights of which are described below, the ALICE collaboration takes stock of its first decade of QCD studies at the LHC. The results from these studies include a suite of observables that reveal a complex evolution of the near-perfect QGP liquid that emerges in high-temperature QCD. ALICE measurements also demonstrate that charm quarks equilibrate extremely quickly within this liquid, and are able to regenerate QGP-melted “charmonium” particle states. ALICE has extensively mapped the QGP opaqueness with high-energy probes, and has directly observed the QCD dead-cone effect in proton–proton collisions. Surprising QGP-like signatures have also been observed in rare proton–proton and proton–lead collisions.

The Large Hadron Collider is one of the most important scientific instruments in the world — and also one of the biggest humans have ever built.

The Large Hadron Collider is the world’s most powerful particle accelerator, situated along the border between Switzerland and France, just outside the Swiss city of Geneva. Still, that description doesn’t quite do it justice.

It is also one of the largest scientific instruments ever built; the result of a decade of collaboration between over 100 countries, hundreds of universities and scientific institutes, and more than 10,000 scientists and researchers.

face_with_colon_three circa 2012.


A century after Albert Einstein came up with his theories of relativity, a constellation of Global Positioning System satellites is orbiting Earth, making practical use of his ground-breaking understanding of time.

If the discovery of the Higgs boson particle pans out, will even more mind-bending technologies result?

Theoretically, it’s possible, says Arizona State University physicist Lawrence Krauss; but practically, it’s unlikely.

A team of scientists from the University of Sciences and Technology of China has proposed a bold solution for the “measurement problem” in quantum mechanics, suggesting the eventual outcome for states of existence is determined by a “game” between the observer and nature.

For over a century, the quantum realm has imposed an abundance of bizarre obstacles along the road to understanding universal existence.

In the microscopic world of atoms and subatomic particles, nature demonstrates unparalleled strangeness, becoming unpredictable and operating in contrast to how it behaves at the macroscopic scale defined by classical physics.

Intelligence has evolved on an accelerating, exponential trendline to create a Sentience Singularity in the past, just like the progress of technology that followed it. The two are closely related, and form the first principles of futurism, and any attempt to make long-term predictions.

ATOM Chapter 1 : Prologue : https://atom.singularity2050.com/1-prologue.html.

Thumbnail image from U of Chicago.

#EvolutionofIntelligence #ArtificialSuperIntelligence #Singularity

The latest findings are “the next big step towards the realization of neutrino astronomy.”

A black hole roughly 47 million light-years away, called NGC 1,068, is spewing out mysterious and elusive “ghost particles”, or neutrinos.

Neutrinos are notoriously difficult to detect as they require precise instruments deep below the Earth’s surface to avoid any interference from cosmic rays and background radiation.

Less than 20 years ago, Konstantin Novoselov and Andre Geim first created two-dimensional crystals consisting of just one layer of carbon atoms. Known as graphene, this material has had quite a career since then.

Due to its exceptional strength, is used today to reinforce products such as tennis rackets, car tires or aircraft wings. But it is also an interesting subject for , as physicists keep discovering new, astonishing phenomena that have not been observed in other materials.

Evidence of high-energy neutrino emission from the galaxy NGC 1,068 has been found by an international team of scientists for the first time. First spotted in 1,780, NGC 1,068, also known as Messier 77, is an active galaxy in the constellation Cetus and one of the most familiar and well-studied galaxies to date. Located 47 million light-years away from us, this galaxy can be observed with large binoculars. The results, to be published today (November 4, 2022) in the journal Science, were shared yesterday in an online scientific webinar that gathered experts, journalists, and scientists from around the globe.

Physicists often refer to the neutrino as the “ghost particle” because they almost never interact with other matter.

The detection was made at the IceCube Neutrino Observatory. This massive neutrino telescope, which is supported by the National Science Foundation, encompasses 1 billion tons of instrumented ice at depths of 1.5 to 2.5 kilometers (0.9 to 1.2 miles) below Antarctica’s surface near the South Pole. This unique telescope explores the farthest reaches of our universe using neutrinos. It reported the first observation of a high-energy astrophysical neutrino source in 2018. The source is a known blazar named TXS 0506+056 located 4 billion light-years away off the left shoulder of the Orion constellation.