БЛОГ

Archive for the ‘particle physics’ category: Page 305

Jan 12, 2022

Physicists Discovered a Hybrid Particle. Bound By a Uniquely Strong ‘Glue’?

Posted by in categories: materials, particle physics

A team of physicists from the Massachusetts Institute of Technology (MIT) has discovered a hybrid particle that could pave the way for smaller and faster electronic devices in the future.

The hybrid particle, which was found to be a mashup of an electron and a phonon (a quasiparticle formed by vibrating atoms in a material), was detected in a strange, two-dimensional magnetic substance.

Probably the most intriguing aspect of the discovery, however, is that when the scientists measured the force between the electron and phonon, they saw that the glue, or bond, was 10 times stronger than what had previously been estimated for other known electron-phonon hybrids, according to the study which has been published in the journal Nature Communications.

Jan 12, 2022

The Large Hadron Collider blips that could herald a new era of physics

Posted by in category: particle physics

Hints of a new particle carrying a fifth force of nature have been multiplying at the LHC – and many physicists are convinced this could finally be the big one.

Jan 11, 2022

MIT Physicists Detect Strange Hybrid Particle Held Together by Uniquely Intense “Glue”

Posted by in categories: engineering, particle physics

In the particle world, sometimes two is better than one. Take, for instance, electron pairs. When two electrons are bound together, they can glide through a material without friction, giving the material special superconducting properties. Such paired electrons, or Cooper pairs, are a kind of hybrid particle — a composite of two particles that behaves as one, with properties that are greater than the sum of its parts.

Now MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances.

Jan 11, 2022

Scientists Say the Universe Itself May Be “Pixelated”

Posted by in categories: particle physics, quantum physics, space

Here’s a brain teaser for you: scientists are suggesting spacetime may be made out of individual “spacetime pixels,” instead of being smooth and continuous like it seems.

Rana Adhikari, a professor of physics at Caltech, suggested in a new press blurb that these pixels would be “so small that if you were to enlarge things so that it becomes the size of a grain of sand, then atoms would be as large as galaxies.”

Adhikari’s goal is to reconcile the conventional laws of physics, as determined by general relativity, with the more mysterious world of quantum physics.

Jan 10, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes

Posted by in categories: climatology, particle physics, quantum physics

The world we experience is governed by classical physics. How we move, where we are, and how fast we’re going are all determined by the classical assumption that we can only exist in one place at any one moment in time.

But in the , the behavior of individual atoms is governed by the eerie principle that a particle’s location is a probability. An atom, for instance, has a certain chance of being in one location and another chance of being at another location, at the same exact time.

When particles interact, purely as a consequence of these quantum effects, a host of odd phenomena should ensue. But observing such purely quantum mechanical behavior of interacting particles amid the overwhelming noise of the classical world is a tricky undertaking.

Jan 8, 2022

Hawking radiation mimicked in the lab

Posted by in categories: cosmology, particle physics, quantum physics

Circa 2014


Scientists have come closer than ever before to creating a laboratory-scale imitation of a black hole that emits Hawking radiation, the particles predicted to escape black holes due to quantum mechanical effects.

The black hole analogue, reported in Nature Physics1, was created by trapping sound waves using an ultra cold fluid. Such objects could one day help resolve the so-called black hole ‘information paradox’ — the question of whether information that falls into a black hole disappears forever.

Continue reading “Hawking radiation mimicked in the lab” »

Jan 8, 2022

Super-Resolution Imaging of a Single Cold Atom on a Nanosecond Timescale

Posted by in category: particle physics

The team of academician GUO Guangcan of University of Science and Technology of China (USTC) of the Chinese Academy of Sciences has made important progress in the research of cold atom.

An atom is the smallest component of an element. It is made up of protons and neutrons within the nucleus, and electrons circling the nucleus.

Jan 8, 2022

A better black hole laser may prove a circuitous ‘Theory of Everything’

Posted by in categories: cosmology, engineering, particle physics, quantum physics

😮 circa 2021.


The fundamental forces of physics govern the matter comprising the Universe, yet exactly how these forces work together is still not fully understood. The existence of Hawking radiation — the particle emission from near black holes — indicates that general relativity and quantum mechanics must cooperate. But directly observing Hawking radiation from a black hole is nearly impossible due to the background noise of the Universe, so how can researchers study it to better understand how the forces interact and how they integrate into a “Theory of Everything”?

Continue reading “A better black hole laser may prove a circuitous ‘Theory of Everything’” »

Jan 8, 2022

“Quantum tornadoes” mark crossover from classical to quantum physics

Posted by in categories: climatology, particle physics, quantum physics

The universe is governed by two sets of seemingly incompatible laws of physics – there’s the classical physics we’re used to on our scale, and the spooky world of quantum physics on the atomic scale. MIT physicists have now observed the moment atoms switch from one to the other, as they form intriguing “quantum tornadoes.”

Things that seem impossible to our everyday understanding of the world are perfectly possible in quantum physics. Particles can essentially exist in multiple places at once, for instance, or tunnel through barriers, or share information across vast distances instantly.

These and other odd phenomena can arise as particles interact with each other, but frustratingly the overarching world of classical physics can interfere and make it hard to study these fragile interactions. One way to amplify quantum effects is to cool atoms right down to a fraction above absolute zero, creating a state of matter called a Bose-Einstein condensate (BEC) that can exhibit quantum properties on a larger, visible scale.

Jan 7, 2022

Powerful Lasers Have Put Us at the ‘Threshold’ of Nuclear Fusion Ignition

Posted by in categories: nuclear energy, particle physics

For a few brief moments, the high-powered lasers generated 1.3 megajoules of fusion energy.


A breakthrough experiment last month at Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF) in California has turned up a whopping 1.3 megajoules of energy, or about three percent of the energy contained in one kilogram of crude oil. The work, as outlined in the journal Physical Review E, puts physicists “at the threshold of fusion ignition,” according to the lab’s press release.

Nuclear fusion, in the simplest terms, is a reaction in which atoms are smashed together to generate an abundance of energy. In some ways, it’s less dangerous than nuclear fission —a process that involves splitting heavy, unstable atoms into two lighter ones—and has the potential to create a lot more energy.

Continue reading “Powerful Lasers Have Put Us at the ‘Threshold’ of Nuclear Fusion Ignition” »