БЛОГ

Archive for the ‘particle physics’ category: Page 311

Nov 30, 2021

New discovery opens the way for brain-like computers

Posted by in categories: drones, mobile phones, particle physics, robotics/AI, satellites

Research has long strived to develop computers to work as energy efficiently as our brains. A study, led by researchers at the University of Gothenburg, has succeeded for the first time in combining a memory function with a calculation function in the same component. The discovery opens the way for more efficient technologies, everything from mobile phones to self-driving cars.

In recent years, computers have been able to tackle advanced cognitive tasks, like language and image recognition or displaying superhuman chess skills, thanks in large part to artificial intelligence (AI). At the same time, the is still unmatched in its ability to perform tasks effectively and energy efficiently.

“Finding new ways of performing calculations that resemble the brain’s energy-efficient processes has been a major goal of research for decades. Cognitive tasks, like image and voice recognition, require significant computer power, and mobile applications, in particular, like mobile phones, drones and satellites, require energy efficient solutions,” says Johan Åkerman, professor of applied spintronics at the University of Gothenburg.

Nov 30, 2021

A New, Simpler Quantum Computer Runs at Room Temperature

Posted by in categories: computing, particle physics, quantum physics

And it uses components already commercially available.

Engineers at Stanford University have demonstrated a new, simpler design for a quantum computer that could help practical versions of the machine finally become a reality, a report from New Atlas reveals.

The new design sees a single atom entangle with a series of photons, allowing it to process and store more information, as well as run at room temperature — unlike the prototype machines being developed by the likes of Google and IBM.

Continue reading “A New, Simpler Quantum Computer Runs at Room Temperature” »

Nov 30, 2021

Weather forecast favorable for SpaceX launch this week

Posted by in categories: computing, particle physics, quantum physics, space travel

Today’s quantum computers are complicated to build, difficult to scale up, and require temperatures colder than interstellar space to operate. These challenges have led researchers to explore the possibility of building quantum computers that work using photons—particles of light. Photons can easily carry information from one place to another, and photonic quantum computers can operate at room temperature, so this approach is promising. However, although people have successfully created individual quantum “logic gates” for photons, it’s challenging to construct large numbers of gates and connect them in a reliable fashion to perform complex calculations.

Nov 30, 2021

Physics books of 2021

Posted by in categories: mathematics, particle physics

Explore 10 new works related to particle physics and astrophysics, plus a bonus book on math.

Nov 29, 2021

Researchers propose a simpler design for quantum computers

Posted by in categories: computing, particle physics, quantum physics

Today’s quantum computers are complicated to build, difficult to scale up, and require temperatures colder than interstellar space to operate. These challenges have led researchers to explore the possibility of building quantum computers that work using photons—particles of light. Photons can easily carry information from one place to another, and photonic quantum computers can operate at room temperature, so this approach is promising. However, although people have successfully created individual quantum “logic gates” for photons, it’s challenging to construct large numbers of gates and connect them in a reliable fashion to perform complex calculations.

Now, Stanford University researchers have proposed a simpler design for photonic quantum computers using readily available components, according to a paper published Nov. 29 in Optica. Their proposed design uses a laser to manipulate a single atom that in turn, can modify the state of the photons via a phenomenon called “quantum teleportation.” The atom can be reset and reused for many quantum gates, eliminating the need to build multiple distinct physical gates, vastly reducing the complexity of building a quantum .

“Normally, if you wanted to build this type of quantum computer, you’d have to take potentially thousands of quantum emitters, make them all perfectly indistinguishable, and then integrate them into a giant photonic circuit,” said Ben Bartlett, a Ph.D. candidate in applied physics and lead author of the paper. “Whereas with this design, we only need a handful of relatively simple components, and the size of the machine doesn’t increase with the size of the quantum program you want to run.”

Nov 28, 2021

CERN’s ALICE Detector Takes the Next Step in Understanding the Interaction Between Hadrons

Posted by in categories: food, particle physics, robotics/AI, sustainability

The ALICE collaboration has for the first time observed the residual strong interaction between protons and phi mesons. In an article recently published in Physical Review Letters, the ALICE collaboration has used a method known as femtoscopy to study the residual interaction between two-quark an.


Sustainable agriculture continues to spread at an accelerated pace and farmers need all the help they can get in order to cope with the increasing workload. California-based company Iron Ox specializes in the use of robotics and artificial intelligence in agriculture, and Grover is the latest robot to join its team.

Nov 28, 2021

Is Quantum Tunneling Faster than Light? | Space Time | PBS Digital Studios

Posted by in categories: particle physics, quantum physics, space

Start your Audible trial today: http://www.audible.com/spacetime.

Hello from the other side. In this episode find out how quanta can can move through solid objects.

Continue reading “Is Quantum Tunneling Faster than Light? | Space Time | PBS Digital Studios” »

Nov 28, 2021

What is the Nuclear EMC effect? Scientists shed light on a physics-defying mystery

Posted by in category: particle physics

Nuclear physicists have observed something strange in the heart of an atom that defies existing science. They’re on a mission to figure out why.

Nov 27, 2021

Tachyons: Facts about these faster-than-light particles

Posted by in category: particle physics

Tachyons are not just the stuff of science fiction.


Tachyons are hypothetical particles that move faster than the speed of light and travel backward through time. Whether they exist is still up for debate.

Nov 27, 2021

Quantum superposition of thermodynamic evolutions with opposing time’s arrows

Posted by in categories: particle physics, quantum physics

Taking a gas enclosed in a vessel as a pictorial example, the aforementioned state can be constructed by entangling the position of the piston with a further auxiliary quantum system, thereby establishing a quantum superposition of the following two processes: (i) a process wherein the gas particles are initially in thermal equilibrium confined in one half of the vessel by a piston, and the piston is pulled outwards, and (ii) the reverse process, in which the piston is pushed towards the gas, starting from an initial state where the gas occupies the entire vessel in thermal equilibrium.

We will now measure the work of the system undergoing the above-mentioned superposition of forward and time-reversal dynamics. In order to implement such a measurement, we formally construct a procedure described by a set of measurement operators forming a completely positive and trace-preserving (CPTP) map. In this regard, we will refer to a standard TPM procedure to measure work in quantum thermodynamic processes13. Implementations of the TPM in quantum setups25,26,27,28,29, as well as suitable extensions30,31,32,33, have recently received increasing attention. Our procedure can be seen as a generalisation of the TPM scheme to situations where different thermodynamic processes are allowed to be superposed, and can consequently interfere.

In the TPM scheme, work is defined as the energy difference between the initial and final states of the system, which are measured through ideal projective measurements of the system Hamiltonian implemented before and after the thermodynamic process associated with the protocol Λ34,35. This measurement scheme can be performed, individually, both for the forward and the time-reversal processes, enabling the construction of the work probability distributions P (W) and \(\tilde{P}(W)\) 0, respectively.