БЛОГ

Archive for the ‘particle physics’ category: Page 363

Jan 11, 2021

Researchers Finally Create Electron Crystals 86 Years After First Proposed

Posted by in categories: materials, particle physics

Eighty-six years since electron crystals were first proposed, physicists have now constructed them, trapping electrons in a repeating pattern. The achievement is reported in the journal Nature.

A crystal is made of a repeating pattern of particles but electrons are difficult to keep in place. So an electron crystal is like trying to organize a large number of electrons that won’t stay still — it’s the herding cats of particle physics.

However, this team had an ingenious solution. They built a Wigner crystal using layers of semi-conductors just one atom thick. They then used two different tungsten materials and created a hexagonal pattern known as a moiré superlattice by placing one material on top of the other.

Jan 11, 2021

Quantum Experiment Reveals Particles Can Form Collectives Out of Almost Nothing

Posted by in categories: particle physics, quantum physics

How many particles do you need before individual atoms start behaving collectively? According to new research, the number is incredibly low. As few as six atoms will start transitioning into a macroscopic system, under the right conditions.

Using a specially designed ultra-cold laser trap, physicists observed the quantum precursor of the transition from a normal to a superfluid phase – offering a way to study the emergence of collective atomic behaviour and the limits of macroscopic systems.

Many-body physics is the field that seeks to describe and understand the collective behaviour of large numbers of particles: a bucket of water, for example, or a canister of gas. We can describe these substances in terms of their density, or their temperature – the way the substance is acting as a whole.

Jan 11, 2021

A “no math” (but seven-part) guide to modern quantum mechanics

Posted by in categories: mathematics, particle physics, quantum physics

Welcome to “The curious observer’s guide to quantum mechanics”–featuring particle/wave duality.

Jan 11, 2021

NASA detects human-made nuclear bubble protecting Earth from radiation; Read

Posted by in categories: particle physics, space

“The human-made frequencies such as the one used for coded or long-distance messaging like contacting submarines deep underwater have been “leaking” into space. This leaked VLF has created a bubble-like barrier around Earth’s atmosphere which is reportedly protecting Earth from charged, radioactive particles. It is also said that the nuclear blast/ blasts have turned into belts of radioactivity around Earth which is now further away than it was in the 1960s.”


NASA has found a nuclear bubble surrounding Earth which is protecting it from Radiation. Know what is the VLF capable of and what is human-induced space weather.

Continue reading “NASA detects human-made nuclear bubble protecting Earth from radiation; Read” »

Jan 10, 2021

Scientists Discover a New Type of Chemical Bond, And It’s Surprisingly Strong

Posted by in categories: chemistry, particle physics

Scientists have recently discovered a totally new type of chemical bond – and it’s way stronger than it has any right to be.

The new type of bond shows that the divide between powerful covalent bonds, which bind molecules together, and weak hydrogen bonds, which form between molecules and can be broken by something as simple as stirring salt into a glass of water, isn’t as clear as chemistry textbooks would suggest.

Think back to that high-school chemistry class, and you’ll remember that there are different types of bonds that link atoms together into molecules and crystal structures.

Jan 10, 2021

Atoms of Space and Time

Posted by in categories: particle physics, quantum physics

Circa 2006


We perceive space and time to be continuous, but if the amazing theory of loop quantum gravity is correct, they actually come in discrete pieces.

Jan 9, 2021

Black holes leak energy when they eat plasma near the event horizon

Posted by in categories: cosmology, particle physics

When magnetic fields around a black hole reconnect, they can slow down plasma particles near the event horizon, which cause the black hole to lose energy when it swallows them.

Jan 8, 2021

New type of atomic clock keeps time even more precisely

Posted by in categories: cosmology, particle physics

A newly-designed atomic clock uses entangled atoms to keep time even more precisely than its state-of-the-art counterparts. The design could help scientists detect dark matter and study gravity’s effect on time.

Jan 8, 2021

Primordial black holes and the search for dark matter from the multiverse

Posted by in categories: cosmology, particle physics

Such primordial black holes (PBHs) could account for all or part of dark matter, be responsible for some of the observed gravitational waves signals, and seed supermassive black holes found in the center of our Galaxy and other galaxies. They could also play a role in the synthesis of heavy elements when they collide with neutron stars and destroy them, releasing neutron-rich material. In particular, there is an exciting possibility that the mysterious dark matter, which accounts for most of the matter in the universe, is composed of primordial black holes. The 2020 Nobel Prize in physics was awarded to a theorist, Roger Penrose, and two astronomers, Reinhard Genzel and Andrea Ghez, for their discoveries that confirmed the existence of black holes. Since black holes are known to exist in nature, they make a very appealing candidate for dark matter.

The recent progress in fundamental theory, astrophysics, and astronomical observations in search of PBHs has been made by an international team of particle physicists, cosmologists and astronomers, including Kavli IPMU members Alexander Kusenko, Misao Sasaki, Sunao Sugiyama, Masahiro Takada and Volodymyr Takhistov.

To learn more about primordial black holes, the research team looked at the early universe for clues. The early universe was so dense that any positive density fluctuation of more than 50 percent would create a black hole. However, cosmological perturbations that seeded galaxies are known to be much smaller. Nevertheless, a number of processes in the early universe could have created the right conditions for the black holes to form.

Jan 7, 2021

Researchers question fundamental study on the Kondo effect

Posted by in categories: computing, particle physics, quantum physics

The Kondo effect influences the electrical resistance of metals at low temperatures and generates complex electronic and magnetic orders. Novel concepts for data storage and processing, such as using quantum dots, are based on this. In 1998, researchers from the United States published spectroscopic studies on the Kondo effect using scanning tunneling microscopy, which are considered ground-breaking and have triggered countless others of a similar kind. Many of these studies may have to be re-examined now that Jülich researchers have shown that the Kondo effect cannot be proven beyond doubt by this method. Instead, another phenomenon is creating precisely the spectroscopic ‘fingerprint’ that was previously attributed to the Kondo effect.

Normally the resistance of metals decreases as the temperature drops. The Kondo effect causes it to rise again below a threshold value typical to the material in question, the so-called Kondo temperature. This phenomenon occurs when magnetic foreign atoms, such as iron, contaminate non-magnetic host metals, such as copper. Simply put, when a current flows, the atomic nuclei are engulfed by electrons. The iron atoms have a quantum mechanical magnetic moment. This causes the electrons in the vicinity to align their spin antiparallel to the moment of the atom at low temperatures and to hang around the cobalt atom like a cloud on a mountaintop. This hinders the flow of the electrons—the electrical resistance then increases. In physics, this is known as entanglement, the strong coupling of the moment of the impurity with the spins of the surrounding electrons.