БЛОГ

Archive for the ‘particle physics’ category: Page 432

Nov 15, 2019

Building to house world’s largest tokamak fusion reactor now complete

Posted by in categories: nuclear energy, particle physics

The structure that will house one of the largest and most ambitious energy experiments in history is now complete, with engineers working on the ITER Tokamak Building swinging their last pylon into place in readiness for the nuclear fusion reactor’s assembly stage. Nine years in the making, the facility is built to host the type of super-hot high-speed reactions that take place inside the Sun, and hopefully advance our decades-long pursuit of clean and inexhaustible nuclear fusion energy.

In the works since 1985, ITER (International Thermonuclear Experimental Reactor) is a type of nuclear fusion reactor known as a tokamak and is a collaborative project involving thousands of scientists and engineers from 35 countries. These donut-shaped devices are designed to accommodate circular streams of plasma consisting of hydrogen atoms, which are compressed using superconducting magnets so that they fuse together and release monumental amounts of energy.

There are key technological challenges to overcome when it comes to tokamak reactors. Chiefly, these center on bringing them up to the required temperatures and keeping the streams of plasma in place long enough for the reactions to take place.

Nov 14, 2019

Neutrinos Lead to Unexpected Discovery in Basic Math

Posted by in categories: mathematics, particle physics

Three physicists stumbled across an unexpected relationship between some of the most ubiquitous objects in math.

Nov 14, 2019

Excitons will shape the future of electronic devices

Posted by in categories: nanotechnology, particle physics

Excitons are quasiparticles made from the excited state of electrons and—according to research being carried out EPFL—have the potential to boost the energy efficiency of our everyday devices.

It’s a whole new way of thinking about electronics. Excitons—or quasiparticles formed when electrons absorb light—stand to revolutionize the building blocks of circuits. Scientists at EPFL have been studying their extraordinary properties in order to design more energy-efficient electronic systems, and have now found a way to better control excitons moving in semiconductors. Their findings appear today in Nature Nanotechnology.

Quasiparticles are temporary phenomena resulting from the interaction between two particles within solid matter. Excitons are created when an electron absorbs a photon and moves into a higher energy state, leaving behind a hole in its previous energy state (called a “valence band” in band theory). The electron and electron hole are bound together through attractive forces, and the two together form what is called an exciton. Once the electron falls back into the hole, it emits a photon and the exciton ceases to exist.

Nov 14, 2019

Unique properties of quantum material explained for first time

Posted by in categories: nanotechnology, particle physics, quantum physics

The characteristics of a new, iron-containing type of material that is thought to have future applications in nanotechnology and spintronics have been determined at Purdue University.

The native material, a topological , is an unusual type of three-dimensional (3D) system that has the interesting property of not significantly changing its when it changes electronic phases—unlike water, for example, which goes from ice to liquid to steam. More important, the material has an electrically conductive surface but a non-conducting (insulating) core.

However, once iron is introduced into the native material, during a process called doping, certain structural rearrangements and magnetic properties appear which have been found with high-performance computational methods.

Nov 13, 2019

King of the Gods

Posted by in categories: particle physics, space travel

NASA launched the Juno mission to Jupiter on August 5, 2011. After a five-year flight, the spacecraft entered orbit on July 4, 2016.

Jupiter is the largest planet in the Solar System, with an equatorial diameter of 142,984 kilometers. It is so large that it could contain all of the other planets within its volume. Since Jupiter rotates in a mere 9.925 hours, its equatorial diameter is more than 9275 kilometers greater than the distance between its poles.

Continue reading “King of the Gods” »

Nov 13, 2019

New spin directions in pyrite an encouraging sign for future spintronics

Posted by in categories: materials, particle physics

A Monash University study revealing new spin textures in pyrite could unlock these materials’ potential in future spintronics devices.

The study of pyrite-type provides new insights and opportunities for selective spin control in topological spintronics devices.

Nov 11, 2019

Quantum computing gets 10 billion qubits closer

Posted by in categories: computing, particle physics, quantum physics

Oxford University researchers have, for the first time, generated a massive 10 billion entangled bits in silicon, taking an important step towards a real world quantum computer.

The researchers cooled a piece of phosphorus-doped silicon to within one degree of absolute zero and applied a magnetic field. This process lined up the spins of one electron per phosphorus atom. Then the scientists used carefully timed radio pulses to nudge the nuclei and electrons into an entangled state. Across the silicon crystal, this produced billions of entangled pairs.

Stephanie Simmons, researcher and lead author on the paper Entanglement in a solid-state spin ensemble — published in Nature, says that quantum computers really start to give classical computers a run for their money at a few dozen qubits, but her team is working to skip that stage altogether by going directly from a two-qubit system to one with 10 billion.

Nov 10, 2019

Dark Matter Detector Finds the Rarest Event Ever Seen in the Universe

Posted by in categories: cosmology, particle physics

The XENON experiment recently made a breakthrough in their hunt for dark matter, observing the most rare decay process in the Universe that involves neutrinos.

Nov 8, 2019

A new way to measure gravity: Using floating atoms

Posted by in category: particle physics

A team of researchers at the University of California, Berkeley, has found a new way to measure gravity—by noting differences in atoms in a supposition state, suspended in the air by lasers. In their paper published in the journal Science, the group describes their new technique and explain why they believe it will be more useful than traditional methods.

Currently, the standard way to conduct gravity experiments is to drop things down shielded tubes and measure them as they whiz by instruments. In addition to giving researchers a very brief glimpse of gravitational interactions, such methods often fall prey to inadvertent stray magnetic fields. In this new effort, the researchers have found a way to measure gravity that does not involve dropping objects at all.

The new approach involved releasing a cloud of cesium atoms into the air in a small chamber and then using to split several of them into a superposition state. Once split, lasers were used to keep all the atoms in fixed positions with one of each pair raised slightly higher than its mate. The team then measured each atom’s wave particle duality, which is impacted by gravity. By measuring the difference in duality between the paired atoms (because of the difference in their distances from Earth), the researchers were able to come up with a measurement for gravity.

Nov 8, 2019

Attoseconds break into atomic interior

Posted by in categories: particle physics, quantum physics

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very bright, and the photons delivered must have sufficiently high energy. This combination of properties has been sought in laboratories around the world for the past 15 years. Physicists at the Laboratory for Attosecond Physics (LAP), a joint venture between the Ludwig-Maximilians-Universität Munich (LMU) and the Max Planck Institute of Quantum Optics (MPQ), have now succeeded in meeting the conditions necessary to achieve this goal. In their latest experiments, they have been able to observe the non-linear interaction of an attosecond pulse with electrons in one of the inner orbital shells around the atomic nucleus. In this context, the term ‘non-linear’ indicates that the interaction involves more than one photon (in this particular case two are involved).