Archive for the ‘particle physics’ category: Page 5

Jul 1, 2022

The Size of an Atom: How Scientists First Guessed It’s About Quantum Physics

Posted by in categories: particle physics, quantum physics

Atoms are all about a tenth of a billionth of a meter wide (give or take a factor of 2). What determines an atom’s size? This was on the minds of scientists at the turn of the 20th century. The particle called the “electron” had been discovered, but the rest of an atom was a mystery. Today we’ll look at how scientists realized that quantum physics, an idea which was still very new, plays a central role. (They did this using one of their favorite strategies: “dimensional analysis”, which I described in a recent post.)

Since atoms are electrically neutral, the small and negatively charged electrons in an atom had to be accompanied by something with the same amount of positive charge — what we now call “the nucleus”. Among many imagined visions for what atoms might be like was the 1904 model of J.J. Thompson, in which he imagined the electrons are embedded within a positively-charged sphere the size of the whole atom.

But Thompson’s former student Ernest Rutherford gradually disproved this model in 1909–1911, through experiments that showed the nucleus is tens of thousands of times smaller (in radius) than an atom, despite having most of the atom’s mass.

Continue reading “The Size of an Atom: How Scientists First Guessed It’s About Quantum Physics” »

Jun 29, 2022

Novel construction system uses acoustic levitation to assemble parts

Posted by in categories: computing, particle physics

LeviPrint is a system that uses acoustic manipulation for assembling objects without physical contact. It generates acoustic fields that trap small particles, glue droplets and elongated stick-like elements that can be manipulated and reoriented as they are levitated. It is a fully functional system for manufacturing 3D structures using contactless manipulation.

It was developed by researchers from the UPNA/NUP-Public University of Navarre Asier Marzo and Iñigo Ezcurdia, who together with Rafael Morales (Ultraleap Ltd, UK) and Marco Andrade (University of São Paulo, Brazil) are authors of the paper “LeviPrint: Contactless Fabrication using Full Acoustic Trapping of Elongated Parts.”

Continue reading “Novel construction system uses acoustic levitation to assemble parts” »

Jun 29, 2022

How physicists are probing the Higgs boson 10 years after its discovery

Posted by in category: particle physics

The famous particle may point to cracks in the standard model and new physics beyond.

Jun 28, 2022

Physicists confront the neutron lifetime puzzle

Posted by in categories: chemistry, cosmology, internet, particle physics

To solve a long-standing puzzle about how long a neutron can “live” outside an atomic nucleus, physicists entertained a wild but testable theory positing the existence of a right-handed version of our left-handed universe. They designed a mind-bending experiment at the Department of Energy’s Oak Ridge National Laboratory to try to detect a particle that has been speculated but not spotted. If found, the theorized “mirror neutron”—a dark-matter twin to the neutron—could explain a discrepancy between answers from two types of neutron lifetime experiments and provide the first observation of dark matter.

“Dark matter remains one of the most important and puzzling questions in science—clear evidence we don’t understand all matter in nature,” said ORNL’s Leah Broussard, who led the study published in Physical Review Letters.

Continue reading “Physicists confront the neutron lifetime puzzle” »

Jun 28, 2022

Turning plastic waste into hydrogen and high-value carbons

Posted by in categories: nanotechnology, particle physics

The ever-increasing production and use of plastics over the last half century has created a huge environmental problem for the world. Currently, most of the 4.9 billion tonnes of plastics ever produced will end up in landfills or the natural environment, and this number is expected to increase to around 12 billion tonnes by 2050.

In collaboration with colleagues at universities and institutions in the UK, China and the Kingdom of Saudi Arabia, researchers in the Edwards/ Xiao group at Oxford’s Department of Chemistry have developed a method of converting plastic waste into hydrogen gas which can be used as a clean fuel, and high-value solid carbon. This was achieved with a new type of catalysis developed by the group which uses microwaves to activate catalyst particles to effectively ‘strip’ hydrogen from polymers.

The findings, published in Nature Catalysis, detail how the researchers mixed mechanically-pulverised plastic particles with a microwave-susceptor catalyst of iron oxide and aluminium oxide. The mixture was subjected to microwave treatment and yielded a large volume of hydrogen gas and a residue of carbonaceous materials, the bulk of which were identified as carbon nanotubes.

Jun 28, 2022

Finally, Scientists Prove the ‘Dead Cone Effect,’ Shaking Up Particle Physics

Posted by in category: particle physics

Operators of the ALICE detector have observed the first direct evidence of the “dead cone effect,” allowing them to assess the mass of the elusive charm quark.

The ALICE collaboration at the Large Hadron Collider (LHC) in Geneva, Switzerland, recently made the first observation of an important aspect of particle physics called the “dead cone effect.”

The effect is a fundamental element of the strong nuclear force — one of the four fundamental forces of nature — responsible for binding quarks and gluons. These are the fundamental particles that comprise hadrons, such as protons and neutrons, that in turn make up all atomic nuclei, which are never seen on their own under normal circumstances, only at the kind of high energy levels generated at the LHC.

Continue reading “Finally, Scientists Prove the ‘Dead Cone Effect,’ Shaking Up Particle Physics” »

Jun 28, 2022

Xanadu puts quantum advantage in the cloud

Posted by in categories: particle physics, quantum physics

Toronto-based start-up’s programmable photonic device is accessible to the public and much faster than classical machines at Gaussian boson sampling.

Jun 28, 2022

Majorana fermions hold potential for information technology with zero resistance

Posted by in categories: materials, particle physics

A new, multi-node FLEET review, published in Matter, investigates the search for Majorana fermions in iron-based superconductors.

Jun 28, 2022

Making dark semiconductors shine

Posted by in categories: computing, particle physics, quantum physics, solar power, sustainability

Whether or not a solid can emit light, for instance as a light-emitting diode (LED), depends on the energy levels of the electrons in its crystalline lattice. An international team of researchers led by University of Oldenburg physicists Dr. Hangyong Shan and Prof. Dr. Christian Schneider has succeeded in manipulating the energy-levels in an ultra-thin sample of the semiconductor tungsten diselenide in such a way that this material, which normally has a low luminescence yield, began to glow. The team has now published an article on its research in the science journal Nature Communications.

According to the researchers, their findings constitute a first step towards controlling the properties of matter through light fields. “The idea has been discussed for years, but had not yet been convincingly implemented,” said Schneider. The light effect could be used to optimize the optical properties of semiconductors and thus contribute to the development of innovative LEDs, , optical components and other applications. In particular the optical properties of organic semiconductors—plastics with semiconducting properties that are used in flexible displays and solar cells or as sensors in textiles—could be enhanced in this way.

Tungsten diselenide belongs to an unusual class of semiconductors consisting of a and one of the three elements sulfur, selenium or tellurium. For their experiments the researchers used a sample that consisted of a single crystalline layer of and selenium atoms with a sandwich-like structure. In physics, such materials, which are only a few atoms thick, are also known as two-dimensional (2D) materials. They often have unusual properties because the they contain behave in a completely different manner to those in thicker solids and are sometimes referred to as “quantum materials.”

Jun 28, 2022

Quantum Circuit Uses Just A Few Atoms

Posted by in categories: computing, particle physics, quantum physics

Researchers at the University of New South Wales and a startup company, Silicon Quantum Computing, published results of their quantum dot experiments. The circuits use up to 10 carbon-based quantum dots on a silicon substrate. Metal gates control the flow of electrons. The paper appears in Nature and you can download the full paper from there.

What’s new about this is that the dots are precisely arranged to simulate an organic compound, polyacetylene. This allowed researchers to model the actual molecule. Simulating molecules is important in the study of exotic matter phases, such as superconductivity. The interaction of particles inside, for example, a crystalline structure is difficult to simulate using conventional methods. By building a model using quantum techniques on the same scale and with the same topology as the molecule in question, simulation is simplified.

The SSH (Su-Schreffer-Heeger) model describes a single electron moving along a one-dimensional lattice with staggered tunnel couplings. At least, that’s what the paper says and we have to believe it. Creating such a model for simple systems has been feasible, but for a “many body” problem, conventional computing just isn’t up to the task. Currently, the 10 dot model is right at the limit of what a conventional computer can simulate reasonably. The team plans to build a 20 dot circuit that would allow for unique simulations not feasible with classic computing tech.

Page 5 of 334First23456789Last