БЛОГ

Archive for the ‘particle physics’ category: Page 559

Apr 27, 2016

Researchers create a first frequency comb of time-bin entangled qubits

Posted by in categories: computing, particle physics, quantum physics, security

Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute.

Now an international team of researchers has built a chip that generates multiple frequencies from a robust quantum system that produces time-bin entangled photons. In contrast to other quantum state realizations, entangled photons don’t need bulky equipment to keep them in their quantum state, and they can transmit quantum information across long distances. The new device creates entangled photons that span the traditional telecommunications spectrum, making it appealing for multi-channel quantum communication and more powerful quantum computers.

“The advantages of our chip are that it’s compact and cheap. It’s also unique that it operates on multiple channels,” said Michael Kues, Institut National de la Recherche Scientifique (INRS), University of Quebec, Canada.

Read more

Apr 26, 2016

Nanoparticles may help treat blood cancer

Posted by in categories: biotech/medical, genetics, nanotechnology, particle physics

Nano-particles to treat Acute Myeloid Leukaemia.


A new therapeutic strategy for treating Acute Myeloid Leukaemia could involve using nano-particles to deliver a genetic molecule to fight the disease.

The nanoparticles carrying microRNA miR-22, (a small non-coding RNA molecule that regulates gene expression), showed therapeutic potential in mouse models of Acute Myeloid Leukemia (AML).

Continue reading “Nanoparticles may help treat blood cancer” »

Apr 26, 2016

Micro-sized, Liquid-metal Particles for Heat-free Soldering Developed

Posted by in categories: electronics, engineering, particle physics, sustainability

His lab is dedicated to an idea called frugal innovation: “How do you do very high-level science or engineering with very little?” said Thuo, an assistant professor of materials science and engineering at Iowa State University and an associate of the U.S. Department of Energy’s Ames Laboratory. “How can you solve a problem with the least amount of resources?”

That goal has Thuo and his research group using their materials expertise to study soft matter, single-molecule electronics and renewable energy production. A guiding principle is that, whenever possible, nature should do part of the work.

“Nature has a beautiful way of working for us,” he said. “Self-assembly and ambient oxidation are great tools in our designs.”

Continue reading “Micro-sized, Liquid-metal Particles for Heat-free Soldering Developed” »

Apr 26, 2016

Physicists might soon be able to prove one of Stephen Hawking’s theories on black holes

Posted by in categories: cosmology, particle physics

Nice


Some 42 years ago, renowned theoretical physicist Stephen Hawking proposed that not everything that comes in contact with a black hole succumbs to its unfathomable nothingness.

Tiny particles of light (photons) are sometimes ejected back out, robbing the black hole of an infinitesimal amount of energy, and this gradual loss of mass over time means every black hole eventually evaporates out of existence.

Continue reading “Physicists might soon be able to prove one of Stephen Hawking’s theories on black holes” »

Apr 26, 2016

Hi-res nanoparticle maps reveal best shape for batteries

Posted by in categories: biological, computing, nanotechnology, particle physics

Many recent big technological advances in computing, communications, energy, and biology have relied on nanoparticles. It can be hard to determine the best nanomaterials for these applications, however, because observing nanoparticles in action requires high spatial resolution in “messy,” dynamic environments.

In a recent step in this direction, a team of engineers has obtained a first look inside phase-changing nanoparticles, showing how their shape and crystallinity—the arrangement of atoms within the crystal—can have dramatic effects on their performance.

The work, which appears in Nature Materials, has immediate applications in the design of energy storage materials, but could eventually find its way into data storage, electronic switches, and any device in which the phase transformation of a material regulates its performance.

Read more

Apr 26, 2016

New artificial protein assembles materials at the nanoscale

Posted by in categories: nanotechnology, particle physics

HANOVER, N.H., April 26 (UPI) — Proteins are the contractors of the nanoscale natural world, assembling and building at the atomic, molecular and cellular levels. Increasingly, materials scientists are working to harness that power.

Recently, researchers at Dartmouth College created protein capable of crafting buckyball molecules. “Buckyball” is a nickname for buckminsterfullerene molecules, a soccer ball-shaped molecule of 60 carbon atoms.

The newly synthesized protein organizes buckyballs into a periodic lattice — a wall of buckyballs.

Continue reading “New artificial protein assembles materials at the nanoscale” »

Apr 26, 2016

Superfast light source made from artificial atom

Posted by in categories: computing, particle physics, quantum physics

A new method to create light while retaining the energy using Q-Dot technology.


All light sources work by absorbing energy – for example, from an electric current – and emit energy as light. But the energy can also be lost as heat and it is therefore important that the light sources emit the light as quickly as possible, before the energy is lost as heat. Superfast light sources can be used, for example, in laser lights, LED lights and in single-photon light sources for quantum technology. New research results from the Niels Bohr Institute show that light sources can be made much faster by using a principle that was predicted theoretically in 1954. The results are published in the scientific journal, Physical Review Letters.

Researchers at the Niels Bohr Institute are working with quantum dots, which are a kind of artificial atom that can be incorporated into optical chips. In a quantum dot, an electron can be excited (i.e. jump up), for example, by shining a light on it with a laser and the electron leaves a ‘hole’. The stronger the interaction between light and matter, the faster the electron decays back into the hole and the faster the light is emitted.

Continue reading “Superfast light source made from artificial atom” »

Apr 25, 2016

Engineers Explore How Nanoparticles’ Shape Improves Energy Storage

Posted by in categories: nanotechnology, particle physics

Very nice.


Many technologies rely upon nanomaterials that can absorb or release atoms quickly and repeatedly. New work by Jennifer Dionne’s research group provides a first look inside these phase-changing nanoparticles, showing how their shape and crystallinity affect their performance for battery applications.

Read more

Apr 25, 2016

Scientists take next step towards observing quantum physics in real life

Posted by in categories: computing, drones, particle physics, quantum physics, transportation

Turning on Quantum properties onto a cup of coffee. First step; should be interesting in what researchers discover especially around teleporting. Imaging you’re Dominos pizza with a teleport hub and customer orders a pizza. No longer need a self driving car, or drone; with this technology Dominos can teleport your hot fresh pizza to your house immediately after it is out of the oven.


Small objects like electrons and atoms behave according to quantum mechanics, with quantum effects like superposition, entanglement and teleportation. One of the most intriguing questions in modern science is if large objects – like a coffee cup — could also show this behavior. Scientists at the TU Delft have taken the next step towards observing quantum effects at everyday temperatures in large objects. They created a highly reflective membrane, visible to the naked eye, that can vibrate with hardly any energy loss at room temperature. The membrane is a promising candidate to research quantum mechanics in large objects.

The team has reported their results in Physical Review Letters.

Continue reading “Scientists take next step towards observing quantum physics in real life” »

Apr 23, 2016

New state of water molecule discovered

Posted by in category: particle physics

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy’s Oak Ridge National Laboratory describe a new tunneling state of water molecules confined in hexagonal ultra-small channels — 5 angstrom across — of the mineral beryl. An angstrom is 1/10-billionth of a meter, and individual atoms are typically about 1 angstrom in diameter.

The discovery, made possible with experiments at ORNL’s Spallation Neutron Source and the Rutherford Appleton Laboratory in the United Kingdom, demonstrates features of water under ultra confinement in rocks, soil and cell walls, which scientists predict will be of interest across many disciplines.

Continue reading “New state of water molecule discovered” »