БЛОГ

Archive for the ‘particle physics’ category: Page 7

Aug 31, 2022

Helium’s chilling journey to cool a particle accelerator

Posted by in categories: particle physics, robotics/AI, space

Today it only takes one and a half hours to make a superconducting particle accelerator at the Department of Energy’s SLAC National Accelerator Laboratory colder than outer space.

“Now you click a button and the machine gets from 4.5 Kelvin down to 2 Kelvin,” said Eric Fauve, director of the Cryogenic team at SLAC.

Continue reading “Helium’s chilling journey to cool a particle accelerator” »

Aug 31, 2022

Scientists are going to launch a space balloon to sweep for alien particles

Posted by in categories: alien life, particle physics

Space is a constant reminder of how little we truly know about our universe. A new international project is hoping to help make a little more sense of things. Next year, researchers from 13 countries will launch a balloon to, hopefully, find high-energy particles that couldn’t have come from Earth.

Aug 30, 2022

The Physics of Self-Replication and Nanotechnology

Posted by in categories: mathematics, nanotechnology, particle physics, robotics/AI

Watch over 2,400 documentaries for free for 30 days AND get a free Nebula account by signing up at https://curiositystream.com/upandatom and using the code “upandatom”. Once you sign up you’ll get an email about Nebula. If you don’t get one, contact the curiosity stream support team and they will set you up with a free Nebula account right away.

Nebula: https://watchnebula.com/

Continue reading “The Physics of Self-Replication and Nanotechnology” »

Aug 30, 2022

Optical detection of multiple bacterial species using nanometer-scaled metal-organic hybrids

Posted by in categories: chemistry, food, nanotechnology, particle physics

Osaka Metropolitan University scientists have developed a simple, rapid method to simultaneously identify multiple food poisoning bacteria, based on color differences in the scattered light by nanometer-scaled organic metal nanohybrid structures (NHs) that bind via antibodies to those bacteria. This method is a promising tool for rapidly detecting bacteria at food manufacturing sites and thereby improving food safety. The findings were published in Analytical Chemistry.

According to the World Health Organization (WHO), every year food poisoning affects 600 million people worldwide—almost 1 in every 10 people—of which 420,000 die. Bacterial tests are conducted to detect food poisoning bacteria at food manufacturing factories, but it takes more than 48 hours to obtain results due to the time required for a bacteria incubation process called culturing. Therefore, there remains a demand for rapid testing methods to eliminate food poisoning accidents.

Responding to this need, the research team led by Professor Hiroshi Shiigi at the Graduate School of Engineering, Osaka Metropolitan University, utilized the optical properties of organic metal NHs—composites consisting of polyaniline particles that encapsulate a large number of metal nanoparticles—to rapidly and simultaneously identify food poisoning-inducing bacteria called enterohemorrhagic Escherichia coli (E. coli O26 and E. coli O157) and Staphylococcus aureus.

Aug 30, 2022

Pulses from an atom-sharp tip enable researchers to break and form chemical bonds at will

Posted by in categories: chemistry, particle physics

Chemical reactions often produce messy mixtures of different products. Hence, chemists spend a lot of time coaxing their reactions to be more selective to make particular target molecules. Now, an international team of researchers has achieved that kind of selectivity by delivering voltage pulses to a single molecule through an incredibly sharp tip.

“Controlling the pathway of a chemical reaction, depending on the voltage pulses used, is unprecedented and very alluring to chemists,” says KAUST’s Shadi Fatayer.

The team used an instrument that combines scanning tunneling microscopy (STM) and (AFM). Both techniques can map out the positions of atoms within individual molecules using a tip that may be just a few atoms wide. But the voltage can also be used to break bonds within a molecule, potentially allowing new bonds to form.

Aug 30, 2022

‘Naturally insulating’ material emits pulses of superfluorescent light at room temperature

Posted by in categories: biological, computing, nanotechnology, particle physics, quantum physics

Researchers looking to synthesize a brighter and more stable nanoparticle for optical applications found that their creation instead exhibited a more surprising property: bursts of superfluorescence that occurred at both room temperature and regular intervals. The work could lead to the development of faster microchips, neurosensors, or materials for use in quantum computing applications, as well as a number of biological studies.

Superfluorescence occurs when atoms within a material synchronize and simultaneously emit a short but intense burst of light. The property is valuable for quantum optical applications, but extremely difficult to achieve at room temperatures and for intervals long enough to be useful.

The material in question—lanthanide-doped upconversion nanoparticle, or UCNP—was synthesized by the research team in an effort to create a “brighter” optical material. They produced hexagonal ceramic crystals ranging from 50 nanometers (nm) to 500 nm in size and began testing their lasing properties, which resulted in several impressive breakthroughs.

Aug 30, 2022

Glass nanoparticles show unexpected coupling when levitated with laser light

Posted by in categories: nanotechnology, particle physics

A team of researchers at the University of Vienna, the Austrian Academy of Sciences and the University of Duisburg-Essen have found a new mechanism that fundamentally alters the interaction between optically levitated nanoparticles. Their experiment demonstrates previously unattainable levels of control over the coupling in arrays of particles, thereby creating a new platform to study complex physical phenomena. The results are published in this week’s issue of Science.

Imagine randomly floating around in the room. When a laser is switched on, the particles will experience forces of light and once a particle comes too close it will be trapped in the focus of the beam. This is the basis of Arthur Ashkin’s pioneering Nobel prize work of optical tweezers. When two or more particles are in the vicinity, light can be reflected back and forth between them to form standing waves of light, in which the particles self-align like a crystal of particles bound by light. This phenomenon, also called optical binding, has been known and studied for more than 30 years.

It came as quite a surprise to the researchers in Vienna when they saw a completely different behavior than was expected when studying forces between two glass nanoparticles. Not only could they change the strength and the sign of the binding force, but they could even see one particle, say the left, acting on the other, the right, without the right acting back on the left. What seems like a violation of Newton’s third law (everything that is being acted upon acts back with same strength but opposite sign) is so-called non-reciprocal behavior and occurs in situations in which a system can lose energy to its environment, in this case the laser. Something was obviously missing from our current theory of optical binding.

Aug 29, 2022

Researchers create ‘atomic television’ that transmits live video with big atoms and small lasers

Posted by in categories: entertainment, particle physics

The team even transmitted video games through the atoms to a monitor.

Scientists at the US National Institute of Standards have developed an ‘Atomic Television’ that uses lasers and atom clouds to pick up video transmissions that meet the 480i resolution standard. The team demonstrated the same by transmitting live video feeds and even video games through the atoms to a monitor.

Continue reading “Researchers create ‘atomic television’ that transmits live video with big atoms and small lasers” »

Aug 29, 2022

Entangled photons tailor-made

Posted by in categories: computing, particle physics, quantum physics

This will be very useful in progressing the field of quantum computers and communication.

Researchers at the Max Planck Institute of Quantum Optics set a new record after achieving a quantum entanglement of 14 photons, the largest on record so far, an institutional press release said.

Quantum entanglement, famously described by Albery Einstein as “spooky action at a distance” is a phenomenon where particles become intertwined in such a way that they cease to exist individually, and changing the specific property of one results in an instant change of its partner, even if it is far away.

Continue reading “Entangled photons tailor-made” »

Aug 29, 2022

Researchers achieve record quantum entanglement with 14 photons at once

Posted by in categories: particle physics, quantum physics

Max Planck of Quantum Optics.

Quantum entanglement, famously described by Albery Einstein as “spooky action at a distance” is a phenomenon where particles become intertwined in such a way that they cease to exist individually, and changing the specific property of one results in an instant change of its partner, even if it is far away.

Page 7 of 354First4567891011Last