Toggle light / dark theme

Traditionally, magnetic materials have been divided into two main categories: ferromagnets and antiferromagnets. Over the past few years, however, physicists have uncovered the existence of altermagnets, a new type of magnetic material that exhibits features of both antiferromagnets and ferromagnets.

Altermagnets are that have no net magnetization (i.e., their atomic magnetic moments cancel each other out), like antiferromagnets. Yet they also break spin degeneracy (i.e., the usual energy equality between spin-up and spin-down electrons), similarly to ferromagnets.

Researchers at Songshan Lake Materials Laboratory, Southern University of Science and Technology, the Hong Kong University of Science and Technology and other institutes in China recently set out to realize a layered altermagnet that can generate non-collinear spin current. The room-temperature metallic altermagnet they unveiled was outlined in a paper published in Nature Physics.

Colloidal quantum dots (CQDs) are tiny semiconductor particles that are just a few nanometers in size, which are synthesized in a liquid solution (i.e., colloid). These single-crystal particles, created by breaking down bulk materials via chemical and physical processes, have proved to be promising for the development of photovoltaic (PV) technologies.

Quantum dot-based PVs could have various advantages, including a tunable bandgap, greater flexibility and solution processing. However, quantum dot-based developed so far have been found to have significant limitations, including lower efficiencies than conventional silicon-based cells and high manufacturing costs, due to the expensive processes required to synthesize conductive CQD films.

Researchers at Soochow University in China, the University of Electro-Communications in Japan and other institutes worldwide recently introduced a new method that could potentially help to improve the efficiencies of quantum-dot based photovoltaics, while also lowering their manufacturing costs. Their proposed approach, outlined in a paper published in Nature Energy, entails the engineering of lead sulfide (PbS) CQD inks used to print films for solar cells.

NASA and partners are building the first quantum gravity sensor for space, a breakthrough instrument that uses ultra-cold atoms to detect tiny shifts in Earth’s gravity from orbit. With potential applications ranging from mapping hidden aquifers to exploring distant planets, this compact, highly

The NFI opened its eye to the sky first on April 14, imaging the Sun against the background stars of the constellation Pisces. The view here has been specifically filtered to bring out those background stars, which are otherwise blotted out by the bright zodiacal light generated by sunlight glinting off dust particles in the inner solar system. Also visible is a sliver of the Sun’s corona at center, reminiscent of the view during an annular solar eclipse.

You might notice several strange, streaky crescent-shaped artifacts at right. These arise from a small misalignment between the imager and the Sun, allowing stray sunlight to glint off the optics where it’s not quite blocked by the coronagraph. Engineers will use this and subsequent images to adjust the NFI’s position on the sky to bring it in full alignment with our star and eliminate stray light in future scientific data. Ultimately, that calibration will allow just one percent of the corona’s light through to the imager, providing clear views of faint structures and changes within the corona as the Sun spews material out into space.

Two days later, on April 16, the three WFIs got their first look at the Sun, taking in a broad view across the solar system. These instruments are designed to look at the region of space out to some 45° from the Sun’s position, roughly out to the distance of Earth’s orbit projected on the sky. Their fields of view don’t overlap, but instead form a trefoil pattern that rotates over time.

Scientists discovered a new Hall effect driven by spin currents in noncollinear antiferromagnets, offering a path to more efficient and resilient spintronic devices.

A research team led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has identified a previously unknown type of Hall effect that could lead to more energy-efficient electronic devices.

Their study, published in Physical Review Letters.

A groundbreaking discovery has rocked the field of neutrino astronomy—scientists have detected an ultra-high-energy neutrino using the KM3NeT telescope, with an energy level 16,000 times greater than the most powerful collisions at the Large Hadron Collider. These elusive “ghost particles” provid

A team of Rice University researchers has developed a new way to control light interactions using a specially engineered structure called a 3D photonic-crystal cavity. Their work, published in the journal Nature Communications, lays the foundation for technologies that could enable transformative advancements in quantum computing, quantum communication and other quantum-based technologies.

“Imagine standing in a room surrounded by mirrors,” said Fuyang Tay, an alumnus of Rice’s Applied Physics Graduate Program and first author of the study. “If you shine a flashlight inside, the light will bounce back and forth, reflecting endlessly. This is similar to how an works—a tailored structure that traps light between reflective surfaces, allowing it to bounce around in specific patterns.”

These patterns with discrete frequencies are called cavity modes, and they can be used to enhance light-matter interactions, making them potentially useful in , developing high-precision lasers and sensors and building better photonic circuits and fiber-optic networks. Optical cavities can be difficult to build, so the most widely used ones have simpler, unidimensional structures.

Imagine the tiniest game of checkers in the world—one played by using lasers to precisely shuffle around ions across a very small grid.

That’s the idea behind a recent study published in the journal Physical Review Letters. A team of theoretical physicists from Colorado has designed a new type of quantum “game” that scientists can play on a real quantum computer—or a device that manipulates small objects, such as atoms, to perform calculations.

The researchers even tested their game out on one such device, the Quantinuum System Model H1 Quantum Computer developed by the company Quantinuum. The study is a collaboration between scientists at the University of Colorado Boulder and Quantinuum, which is based in Broomfield, Colorado.