Toggle light / dark theme

Scientists Are Mapping the Boundaries of What Is Knowable and Unknowable

“I give you God’s view,” said Toby Cubitt, a physicist turned computer scientist at University College London and part of the vanguard of the current charge into the unknowable, and “you still can’t predict what it’s going to do.”

Eva Miranda, a mathematician at the Polytechnic University of Catalonia (UPC) in Spain, calls undecidability a “next-level chaotic thing.”

Undecidability means that certain questions simply cannot be answered. It’s an unfamiliar message for physicists, but it’s one that mathematicians and computer scientists know well. More than a century ago, they rigorously established that there are mathematical questions that can never be answered, true statements that can never be proved. Now physicists are connecting those unknowable mathematical systems with an increasing number of physical ones and thereby beginning to map out the hard boundary of knowability in their field as well.

Catastrophe Looms Above: Space Junk Problem Grew ‘Significantly Worse’ In 2024

Don’t judge space junk’s potential for destruction using your Earthly instincts: Traveling at tens of thousands of miles per hour in space, even a small object has the potential to inflict major damage. In one incident that demonstrates that fact of physics, a 2mm piece of space once junk put a 5cm-wide dent in a climate satellite. A modest move up the scale brings much more power: “A one-centimeter piece of debris has the energy of a hand grenade,” ESA’s Tiago Soares told DW.

In an ominous 2009 incident, a Russian Cosmos satellite collided with an Iridium satellite, creating a cloud of about 2,000 pieces of junk measuring 10cm or more. That’s brings us to the nightmare scenario that should fill you with dread: The Kessler Effect. Imagine an initial major impact that creates hundreds of shards, which then start colliding with more orbiting objects, setting off a chain reaction. Actually, you don’t need your imagination. While some scientists say it wasn’t fully accurate in depicting the physics, Hollywood ventured to depict the Kessler Effect in the 2013 movie, Gravity:

Cracking the Devil’s Staircase: How a Time Crystal Danced Through Chaos

A team of physicists has made groundbreaking observations in a semiconductor-based time crystal by periodically driving it with light. As the frequency was altered, the system transitioned from perfect synchronization to complex chaos, forming structures known as the Farey tree and the devil’s st

Astronomers spot two white dwarfs on a collision course

Astronomers at the University of Warwick have made an exciting discovery—a rare, high-mass compact binary star system located just 150 light-years away in the Milky Way. This marks the first time such a system has been observed, offering valuable insights into the origins of type 1a supernovae.

Astronomers have confirmed a pair of white dwarfs on a collision course to become a type 1a supernova—the brightest cosmic explosion. This system, the heaviest of its kind ever identified, has a combined mass of 1.56 times that of the sun.

Separated by only 1/60th of the Earth-sun distance, the stars currently orbit each other in just over 14 hours. However, gravitational wave radiation will gradually draw them closer over billions of years. On the verge of their explosive end, the stars will orbit so rapidly that a single orbit will take only 30–40 seconds.

Descartes’ Unfinished Mystery: Mathematicians Solve 380-Year-Old Geometry Problem

Monash University researchers have extended Descartes’ Circle Theorem by finding a general equation for any number of tangent circles, using advanced mathematical tools inspired by physics. A centuries-old geometric puzzle dating back to the 17th century has finally been solved by mathematicians

Hidden Geometries: The Search for Extra Dimensions and Their Technological Implications

Whether extra dimensions prove to be physical realities or useful mathematical constructs, they have already transformed our understanding of the universe. They have forced us to reconsider fundamental assumptions about space, time, and the nature of physical law. And they remind us that reality may be far richer and more complex than our everyday experience suggests — that beyond the familiar dimensions of length, width, height, and time, there may exist entire realms waiting to be discovered and, perhaps one day, explored.

The theoretical physicist John Wheeler once remarked that “we live on an island of knowledge surrounded by an ocean of ignorance.” Our exploration of extra dimensions extends the shoreline of that island, pushing into uncharted waters with the tools of mathematics, experiment, and imagination. Though we may never set foot in the fifth dimension or beyond, the very act of reaching toward these hidden aspects of reality expands our perspective and deepens our understanding of the cosmos we call home.

As we continue this grand scientific adventure, we carry forward the legacy of those who first dared to imagine worlds beyond our immediate perception — from the mathematicians who developed the language of higher-dimensional geometry to the physicists who incorporated these concepts into our most fundamental theories. Their vision, coupled with rigorous analysis and experimental testing, illuminates a path toward an ever more complete understanding of the universe in all its dimensions.

Using OpenUSD for Modular and Scalable Robotic Simulation and Development

The world of robotics is undergoing a significant transformation, driven by rapid advancements in physical AI. This evolution is accelerating the time to market for new robotic solutions, enhancing confidence in their safety capabilities, and contributing to the powering of physical AI in factories and warehouses.

Announced at GTC, Newton is an open-source, extensible physics engine developed by NVIDIA, Google DeepMind, and Disney Research to advance robot learning and development.

NVIDIA Cosmos launched as a world foundation model (WFM) platform under an open model license to accelerate physical AI development of autonomous machines such as autonomous vehicles and robots.

Space Travel in 25 Years! This Rocket is So Fast, It Could Reach Another Star

Could we reach Alpha Centauri in just 60 years? The Nuclear Salt Water Rocket (NSWR) might be the answer! With speeds of up to 7.6% of light speed, this game-changing propulsion system could make interstellar travel a reality within a single human lifetime. But how does it work? What challenges stand in the way? In this episode, we break down everything you need to know about NSWR and its potential to revolutionize space travel!
Watch now and explore the future of interstellar exploration!

Paper link : https://path-2.narod.ru/design/base_e… 00:00 Introduction 00:58 How the NSWR Works and Its Breakthrough Potential 03:41 Feasibility and Engineering Challenges 06:30 The Potential Impact on Space Exploration 09:35 Outro 09:44 Enjoy MUSIC TITLE : Starlight Harmonies MUSIC LINK : https://pixabay.com/music/pulses-star… Visit our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: / nasaspacenews Twitter: / spacenewsnasa Join this channel to get access to these perks: / @nasaspacenewsagency #NSN #NASA #Astronomy#NuclearSaltWaterRocket #SpaceExploration #InterstellarTravel #AlphaCentauri #FutureOfSpaceTravel #SpaceTechnology #RocketScience #FastestRocket #NASA #RobertZubrin #DeepSpaceExploration #SpacePropulsion #NuclearRockets #Physics #Astrophysics #NewSpaceRace #SpaceEngineering #CosmicExploration #BeyondOurSolarSystem #WarpDrive #Science #SpaceScience #RocketTechnology #StarTravel #FusionPropulsion #MarsToStars #LightSpeedTravel #FuturisticTechnology #HighThrustPropulsion #SpaceFrontier #NextGenSpacecraft.

Chapters:
00:00 Introduction.
00:58 How the NSWR Works and Its Breakthrough Potential.
03:41 Feasibility and Engineering Challenges.
06:30 The Potential Impact on Space Exploration.
09:35 Outro.
09:44 Enjoy.

MUSIC TITLE : Starlight Harmonies.

MUSIC LINK : https://pixabay.com/music/pulses-star

Visit our website for up-to-the-minute updates:

Physicists investigate dynamic phenomena of a time crystal

Physicists at TU Dortmund University have periodically driven a time crystal and discovered a remarkable variety of nonlinear dynamic phenomena, ranging from perfect synchronization to chaotic behavior within a single semiconductor structure. The team has now published its latest findings in the journal Nature Communications.

For their current research, Dr. Alex Greilich’s team from the Department of Physics utilized a highly robust time crystal, previously introduced in Nature Physics last year. The crystal, made of , was continuously illuminated with a laser during the initial experiment. This interaction caused a nuclear spin polarization, which in turn spontaneously generated oscillations, embodying the essence of a time crystal through periodic behavior under constant excitation.

In the newly published follow-up study, the team explored the dynamic phases of the time crystal. They illuminated the semiconductor periodically instead of continuously, while also varying the frequency of the periodic drive. The observed behavior of the time crystal, its , ranged from perfect to chaotic dynamics.