БЛОГ

Archive for the ‘physics’ category: Page 29

Jul 2, 2024

Physicists Have Created The World’s Most Fiendishly Difficult Maze

Posted by in category: physics

Daedalus could have learned a thing or two from a team of physicists in the UK and Switzerland.

Taking principles from fractal geometry and the strategic game of chess, they have created what they say is the most fiendishly difficult maze ever devised.

Led by physicist Felix Flicker of the University of Bristol in the UK, the group has generated routes called Hamiltonian cycles in patterns known as Ammann-Beenker tilings, producing complex fractal mazes that, they say, describe an exotic form of matter known as quasicrystals.

Jul 1, 2024

CERN’s ATLAS experiment releases 65 TB of open data for research

Posted by in categories: education, energy, physics

The ATLAS Experiment at CERN has made two years’ worth of scientific data available to the public for research purposes. The data include recordings of proton–proton collisions from the Large Hadron Collider (LHC) at a collision energy of 13 TeV.

This is the first time that ATLAS has released data on this scale, and it marks a in terms of public access and utilization of LHC data.

Continue reading “CERN’s ATLAS experiment releases 65 TB of open data for research” »

Jul 1, 2024

Scientists observe record-setting electron mobility in a new crystal film

Posted by in categories: physics, sustainability, transportation

A material with a high electron mobility is like a highway without traffic. Any electrons that flow into the material experience a commuter’s dream, breezing through without any obstacles or congestion to slow or scatter them off their path.

The higher a material’s electron mobility, the more efficient its , and the less energy is lost or wasted as electrons zip through. Advanced materials that exhibit high electron mobility will be essential for more efficient and sustainable electronic devices that can do more work with less power.

Now, physicists at MIT, the Army Research Lab, and elsewhere have achieved a record-setting level of electron mobility in a thin film of ternary tetradymite—a class of mineral that is naturally found in deep hydrothermal deposits of gold and quartz.

Jul 1, 2024

This mysterious ancient computer has a ‘calendar ring’ that followed the lunar year

Posted by in categories: computing, physics, space

Gravitational wave research has helped scientists learn more about a famous 2,000-year-old mechanical computer.

Jun 30, 2024

What happened in Big Bang — new theory, new state of matter

Posted by in categories: computing, cosmology, physics

Physicists have proposed a new theory: in the first quintillionth of a second, the universe may have sprouted microscopic black holes with enormous amounts of nuclear charge.

For every kilogram of matter that we can see — from the computer on your desk to distant stars and galaxies — there are 5kgs of invisible matter that suffuse our surroundings. This “dark matter” is a mysterious entity that evades all forms of direct observation yet makes its presence felt through its invisible pull on visible objects.

Continue reading “What happened in Big Bang — new theory, new state of matter” »

Jun 30, 2024

A Study Says Warp Drives Might Be Real—and We’ll Find Them With Lasers

Posted by in category: physics

Scientists say they can detect the presence of advanced propulsion systems through gravitational waves.

Jun 28, 2024

Brian Greene: The Most Important Question in Science

Posted by in categories: cosmology, physics, science

Join my mailing list https://briankeating.com/list to win a real 4 billion year old meteorite! All.edu emails in the USA 🇺🇸 will WIN!

What would Brian Greene do if he could travel through time, and which future technology is he most excited about?

Continue reading “Brian Greene: The Most Important Question in Science” »

Jun 28, 2024

Exploring the Emergent Abilities of Large Language Models

Posted by in categories: information science, physics

Emergence, a fascinating and complex concept, illuminates how intricate patterns and behaviors can spring from simple interactions. It’s akin to marveling at a symphony, where each individual note, simple in itself, contributes to a rich, complex musical experience far surpassing the sum of its parts. Although definitions of emergence vary across disciplines, they converge on a common theme: small quantitative changes in a system’s parameters can lead to significant qualitative transformations in its behavior. These qualitative shifts represent different “regimes” where the fundamental “rules of the game”-the underlying principles or equations governing the behavior-change dramatically.

To make this abstract concept more tangible, let’s explore relatable examples from various fields:

1. Physics: Phase Transitions: Emergence is vividly illustrated through phase transitions, like water turning into ice. Here, minor temperature changes (quantitative parameter) lead to a drastic change from liquid to solid (qualitative behavior). Each molecule behaves simply, but collectively, they transition into a distinctly different state with their properties.

Jun 27, 2024

Researchers find magnetic excitations can be held together by repulsive interactions

Posted by in categories: materials, physics

A group of physicists specialized in solid-state physics from the University of Cologne and international collaborators have examined crystals made from the material BaCO2V2O8 in the Cologne laboratory.

They discovered that the magnetic elementary excitations in the crystal are held together not only by attraction, but also by repulsive interactions. However, this results in a lower stability, making the observation of such repulsively bound states all the more surprising.

The results of the study, “Experimental observation of repulsively bound magnons,” are published in Nature.

Jun 27, 2024

Black Holes and Dark Revelations: Gravitational Waves Provide New Clues to the Composition of Dark Matter

Posted by in categories: cosmology, physics

Note that this does not involve Planck mass fermionic black holes!


A population of massive black holes whose origin is one of the biggest mysteries in modern astronomy has been detected by the LIGO and Virgo gravitational wave detectors.

According to one hypothesis, these objects may have formed in the very early Universe and may compose dark matter, a mysterious substance filling the Universe. A team of scientists has announced the results of nearly 20-year-long observations indicating that such massive black holes may comprise at most a few percent of dark matter. Therefore, another explanation is needed for gravitational wave sources.

Continue reading “Black Holes and Dark Revelations: Gravitational Waves Provide New Clues to the Composition of Dark Matter” »

Page 29 of 327First2627282930313233Last