Toggle light / dark theme

Black holes: Not endings, but beginnings? Theoretical study delves into ‘white holes’

Our understanding of black holes, time and the mysterious dark energy that dominates the universe could be revolutionized, as new University of Sheffield research helps unravel the mysteries of the cosmos.

Black holes—areas of space where gravity is so strong that not even light can escape—have long been objects of fascination, with astrophysicists, and others dedicating their lives to revealing their secrets. This fascination with the unknown has inspired numerous writers and filmmakers, with novels and films such as “Interstellar” exploring these enigmatic objects’ hold on our collective imagination.

According to Einstein’s theory of , anyone trapped inside a black hole would fall toward its center and be destroyed by immense gravitational forces. This center, known as a singularity, is the point where the matter of a giant star, which is believed to have collapsed to form the black hole, is crushed down into an infinitesimally tiny point. At this singularity, our understanding of physics and time breaks down.

Laser-based radiation detector allows testing from a safer distance

A multi-institutional team of physicists and engineers has developed a laser-based radiation detection system that operates from as far away as 10 meters and perhaps farther. Their research is published in the journal Physical Review Applied.

Working with , whether in creating weapons or energy, requires monitoring radiation levels to ensure the safety of workers. However, most detectors only allow for testing in close proximity to the source, which means a worker can be in danger of overexposure before they know it has happened. In this new study, the team assigned themselves the goal of developing a new type of system or device that could be used to test from much farther away.

The team started by noting that radiation interacts with in the air around it, resulting in the creation of , so it should be possible to measure the energy of those electrons using a . In testing their ideas, they found that firing a laser into irradiated air did lead to molecule collisions, which produced free electrons.

Researchers develop glass sensors for the Einstein Telescope

From 2035, the Einstein Telescope will be able to study gravitational waves with unprecedented accuracy. For the telescope, researchers from Jena have manufactured highly sensitive sensors made entirely of glass for the first time.

Gravitational waves are distortions of space-time caused by extreme astrophysical events, such as the collision of black holes. These waves propagate at the speed of light and carry valuable information about such events throughout the universe. In the future, the Einstein Telescope will measure these waves with unprecedented precision, making it a world-leading instrument for detecting .

In order to minimize the impact of noise on the measurements, the telescope is to be built up to 300 meters underground. But even there, there are still , caused, for example, by distant earthquakes or road traffic above ground. Highly sensitive vibration sensors will measure these remaining vibrations.

Density functional theory’s self-interaction correction falters in transition metals, study finds

Density functional theory (DFT) is a cornerstone tool of modern physics, chemistry, and engineering used to explore the behavior of electrons. While essential in modeling systems with many electrons, it suffers from a well-known flaw called self-interaction error. A recent study has identified a new area where a correction for this error breaks down.

3D printing enables large-scale plastic scintillator detectors for particle physics

An international collaboration headed by researchers in the Department of Physics has shown that additive manufacturing offers a realistic way to build large-scale plastic scintillator detectors for particle physics experiments.

In 2024, the T2K Collaboration started to collect new neutrino data following several upgrades to the experiment that included new types of detectors. One of these, called SuperFGD, has a mass of about 2 tons of sensitive volume and is made of approximately two million cubes. Each cube is made of plastic scintillator (PS) material that emits light when a charged particle passes through it.

Neutrinos carry no charge, as their name indicates, but they sometimes interact with other particles, then produce electrons, protons, muons or pions that can be detected. Each PS cube is traversed by three orthogonal optical fibers that collect the scintillation light and guide it to 56,000 photodetectors. The data reveal three-dimensional (3D) particle tracks, which in turn allow researchers to learn more about neutrinos.

The Origins of Us: Where do we come from? | Deep Dive AI Podcast

This Deep Dive AI podcast discusses The Origins of Us: Evolutionary Emergence and The Omega Point Cosmology by Alex M. Vikoulov, Book I of The Science and Philosophy of Information eBook/audiobook series. This book serves as both an accessible introduction and a standalone work, exploring some of the most profound questions in science and philosophy.

In this epic work, Vikoulov delves into the origins of life, consciousness, and intelligence, examining topics such as abiogenesis, noogenesis, and the rise of Homo sapiens. The book also presents The Omega Point Cosmology, which envisions a teleological progression of intelligence toward a cosmic destiny. It blends scientific exploration with digital physics, complexity theory, and transcendental metaphysics, offering a novel perspective on the interconnectedness of information, mind, and reality.

*The Origins of Us: Evolutionary Emergence and the Omega Point Cosmology by Alex M. Vikoulov is available as a Kindle eBook and Audible audiobook:

#OriginsOfUs #EvolutionaryEmergence #OmegaPointCosmology #SyntellectHypothesis #DigitalPhysics #HomoSapiens #ScienceOfInformation #PhilosophyOfInformation #AlphaPoint #OmegaPoint #abiogenesis #noogenesis #evolution #consciousness

Free Will? A Documentary

Is an in-depth investigation featuring world renowned philosophers and scientists into the most profound philosophical debate of all time: Do we have free will?

Featuring: Sean Carroll, Daniel Dennett, Jerry Coyne, Dan Barker, Heather Berlin, Gregg Caruso, Massimo Pigliucci, Alex O’Conner, Coleman Hughes, Edwin Locke, Robert Kane, Rick Messing, Derk Pereboom, Richard Carrier, Trick Slattery, Dustin Kreuger, Steven Sharper, Donia Abouelatta.

Chapters.

Intro: — 0:00
Chapter 1: What is Free Will? — 4:19
Chapter 2: The Problem of Free Will — 15:29
Interlude: 22:33
Chapter 3: Libertarian Free Will — 23:16
Chapter 4: Compatibilism — 34:47
Chapter 5: Free Will Skepticism — 45:13
Interlude: The 3 Positions of Free Will — 55:45
Chapter 6: The Great Debate — 57:28
Chapter 7: Neuroscience — 1:07:28
Chapter 7: The Interaction Problem — 1:18:37
Chapter 8: Physics — 1:20:10
Chapter 8: Reduction & Emergence — 1:22:14
Chapter 9: Can We Have Determinism and Free Will? — 1:28:57
Chapter 10: Free Will and the Law — 1:45:57
Chapter 11: Should We Stop Using the Term Free Will? — 1:56:37
Outro: 2:00:38

Ultra-thin bismuth holds unexpected promise for green electronics

Electronic devices rely on materials whose electrical properties change with temperature, making them less stable in extreme conditions. A discovery by McGill University researchers that challenges conventional wisdom in physics suggests that bismuth, a metal, could serve as the foundation for highly stable electronic components.

The researchers observed a mysterious electrical effect in ultra-thin that remains unchanged across a wide temperature range, from near absolute zero (−273°C) to room temperature.

“If we can harness this, it could become important for green electronics,” said Guillaume Gervais, a professor of physics at McGill and co-author of the study.

Mind the Gap: Will Tiny Discrepancies Derail Cosmology?

Renowned astrophysicist and educator Alex Filippenko joins Brian Greene to discuss an increasingly disturbing cosmological mismatch known as the Hubble Tension, a gap that may require a radical rewriting of the history of the universe.

This program is part of the Big Ideas series, supported by the John Templeton Foundation.

Participant: Alex Filippenko.
Moderator: Brian Greene.

0:00:00 — Introduction.
0:00:50 — Welcome to Alex Filippenko.
0:03:58 — The Most Important Lesson of Science.
0:06:47 — The Hubble Tension.
0:12:04 — Measuring the Expansion Rate of the Universe.
0:23:31 — How far out can we measure?
0:27:10 — Galaxies with Type 1A Supernovae and Cepheids.
0:32:57 — Cosmic Distance Ladder Summary.
0:37:30 — The Universe’s Expansion Rate Today.
0:47:20 — How can we be certain the measurements are correct?
0:51:00 — CMB and using Theoretical Models to Extrapolate the Expansion Rate.
1:00:57 — Positive outcomes to this tension.
1:02:14 — Filippenko’s thoughts on the position of Wendy Freedman’s recent paper.
1:14:09 — Will the Cepheid data set remain at 42?
1:16:55 — Filippenko’s thoughts on the Hubble tension.
1:22:40 — How Cosmology became a precision science.
1:25:11 — Is Inflation a Falsifiable Theory?
1:29:30 — Filippenko’s view of Inflation and the Multiverse.
1:31:08 — Filippenko’s view of Cyclic Inflation and Steinhardt and Penrose’s theories.
1:35:15 — Falsifiable Aspects of Inflation.
1:41:54 — Discovering the Accelerated Expansion of the Universe.
1:47:54 — Filippenko’s thoughts on Saul Perlmutter’s team’s analysis methods.
1:50:47 — Filippenko’s reaction to the initial discovery.
1:59:04 — Thoughts on Dark Energy and the Great Rip.
2:01:58 — Conclusion.
2:03:16 — Credits.

VISIT our Website: http://www.worldsciencefestival.com.
FOLLOW us on Social Media:
Facebook: / worldsciencefestival.
Twitter: / worldscifest.
Instagram: / worldscifest.
TikTok: / worldscifest.
LinkedIn: / world-science-festival.
#worldsciencefestival #briangreene #cosmology #astrophysics #alexfilippenko #bigbang #hubbletension #cosmicinflation #cosmicmicrowavebackground #multiverse #bigrip #darkenergy

/* */