Toggle light / dark theme

Hot and Cold Spots on Stars Lead to Misinterpretations of Exoplanets

How does a star’s activity influence exoplanet data obtained by scientists? This is what a recent study published in The Astrophysical Journal Supplement Series hopes to address as a team of researchers at University College London (UCL) investigated how stellar activity, specifically star spots, could be “contaminating” exoplanet data, specifically exoplanet atmospheric data. This study has the potential to help astronomers develop more efficient methods for studying exoplanets and their atmospheres, specifically with the number of confirmed exoplanets increasing regularly.

For the study, the researchers used NASA’s Hubble Space Telescope to analyze data from 20 gas giant exoplanets ranging in size between Neptune-like and hot-Jupiter that transited their respective parent stars. To obtain a more complete dataset, the team observed the exoplanets from optical to near-infrared wavelengths. In the end, they discovered a broad range of “stellar contamination”, meaning stellar activity was influencing the exoplanet data, specifically regarding the atmospheric compositions and temperatures. For example, the results indicated that the number of specific molecules had errors as high as 6 orders of magnitude while temperatures had errors as high as 145 percent.

“Hotter, brighter regions (faculae) emit more light and so, for instance, if a planet passes in front of the hottest part of the star, this might lead researchers to over-estimate how large the planet is, as it will seem to block out more of the star’s light, or they might infer the planet is hotter than it is or has a denser atmosphere. The reverse is true if the planet passes in front of a cold starspot, making the planet appear ‘smaller’,” said Alexandra (Alex) Thompson, who is a PhD student in UCL’s Department of Physics & Astronomy and a co-author on the study.

This Space Discovery is So BIG, It Shouldn’t Exist!

Scientists have just discovered the largest structure ever found in the universe, and it’s changing everything we thought we knew about space! Quipu, a superstructure spanning 1.3 billion light-years, is bending light, distorting cosmic expansion, and even affecting the Cosmic Microwave Background. What does this mean for our understanding of dark matter, energy, and galaxy evolution? Watch this video to explore Quipu’s secrets and their impact on the universe! 🚀✨ paper link: https://arxiv.org/abs/2501.19236 MUSIC TITLE : Starlight Harmonies MUSIC LINK : https://pixabay.com/music/pulses-starlight-harmonies-185900/ Visit our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: https://www.facebook.com/nasaspacenews Twitter: https://twitter.com/SpacenewsNasa Join this channel to get access to these perks: https://www.youtube.com/channel/UCEuhsgmcQRbtfiz8KMfYwIQ/join #NSN #NASA #Astronomy#SpaceDiscovery #Quipu #LargestStructure #Astronomy #Cosmos #BiggestThingInSpace #DarkMatter #GalaxyClusters #SpaceScience #NASA #Astrophysics #CosmicWeb #ScienceNews #MindBlowing #Intergalactic #BlackHoles #Physics #TimeAndSpace #Superstructure #Galaxies #Universe #Science #Exoplanets #MilkyWay #Astronomers #XrayMapping #SpaceTech #BeyondTheStars #FutureOfSpace #CosmicEvolution …

Does the universe behave the same way everywhere? Weak gravitational lensing could provide an answer

A study published in the Journal of Cosmology and Astroparticle Physics (JCAP) presents a methodology to test the assumption of cosmic homogeneity and isotropy, known as the Cosmological Principle, by leveraging weak gravitational lensing—a light distortion effect described by general relativity—in astronomical images collected by new observatories such as the Euclid Space Telescope. Finding evidence of anomalies in the Cosmological Principle could have profound implications for our current understanding of the universe.

“The Cosmological Principle is like an ultimate kind of statement of humility,” explains James Adam, astrophysicist at the University of the Western Cape, Cape Town, South Africa, and lead author of the new paper. According to the Cosmological Principle, not only are we not at the center of the universe, but a true center does not exist.

A further assumption, similar to but distinct and independent from homogeneity, is that the universe is also isotropic, meaning it has no preferred directions. These assumptions underlie the Standard Model of Cosmology, the theoretical framework used to explain the origin, evolution, and current state of the universe. It is currently the most robust and consistent model, verified by numerous scientific observations, though not yet perfect.

Physicists stabilize superconducting states at ambient pressure

Researchers at the University of Houston’s Texas Center for Superconductivity have achieved another first in their quest toward ambient-pressure high-temperature superconductivity, bringing us one step closer to finding superconductors that work in everyday conditions—and potentially unlocking a new era of energy-efficient technologies.

In their study titled “Creation, stabilization, and investigation at of pressure-induced superconductivity in Bi0.5 Sb1.5 Te3,” published in the Proceedings of the National Academy of Sciences, professors Liangzi Deng and Paul Ching-Wu Chu of the UH Department of Physics set out to see if they could push Bi0.5 Sb1.5 Te3 (BST) into a under pressure—without altering its chemistry or structure.

“In 2001, scientists suspected that applying high pressure to BST changed its Fermi surface topology, leading to improved thermoelectric performance,” Deng said. “That connection between pressure, topology and superconductivity piqued our interest.”

Scientist publishes fascinating ‘evidence’ that we all live inside a computer simulation

The simulation hypothesis suggests that our entire universe and reality could just be hyper-enhanced reality illusions.

He believes recent developments in the field of information physics ‘appear to support this possibility’ in that the physical world is made up of bits of information.

Vopson goes even further by claiming that information might have physical weight and could be a key part of the universe.

Alan Love — Philosophy of Reductionism & Emergence

Make a tax-deductible donation of any amount to help support Closer To Truth continue making content like this: https://shorturl.at/OnyRq.

Can biology be explained entirely in terms of chemistry and then physics? If so, that’s “reductionism.” Or are there “emergent” properties at higher levels of the hierarchy of life that cannot be explained by properties at lower or more basic levels?

Alan C. Love, Ph.D., is a professor in the College of Liberal Arts at the University of Minnesota. He also serves as director of the Minnesota Center for Philosophy of Science.

Shop Closer To Truth merchandise for unique items like notebooks, mugs, and sweatshirts: https://bit.ly/3P2ogje.

Closer To Truth, hosted by Robert Lawrence Kuhn and directed by Peter Getzels, presents the world’s greatest thinkers exploring humanity’s deepest questions. Discover fundamental issues of existence. Engage new and diverse ways of thinking. Appreciate intense debates. Share your own opinions. Seek your own answers.

Physicists Are Using Time Itself to Crack the Dark Matter Puzzle

Using atomic clocks and ultra-stable lasers, they tracked subtle changes in time to detect hidden dark matter waves. By measuring precision shifts across vast distances, the study opens doors to new discoveries in fundamental physics.

Unveiling Dark Matter with a Bold New Approach

A team of international researchers has developed a novel method to investigate dark matter, the mysterious substance believed to hold galaxies together.

Stanford engineers build a water-droplet based computer that runs like clockwork

Manu Prakash, an assistant professor of bioengineering at Stanford, and his students have developed a synchronous computer that operates using the unique physics of moving water droplets. Their goal is to design a new class of computers that can precisely control and manipulate physical matter. For more info: http://news.stanford.edu/news/2015/ju

Music: “Union Hall Melody” by Blue Dot Sessions.

/* */