БЛОГ

Archive for the ‘physics’ category: Page 62

Nov 24, 2022

Astrophysicists solve a mystery of supermassive black holes

Posted by in categories: cosmology, physics

Black holes continue to be equal parts terrifying and fascinating.


An underrated NASA telescope reveals the mechanics behind some supermassive black holes’ relativistic jets.

Nov 22, 2022

Expert Proposes a Method For Telling if We All Live in a Computer Program

Posted by in categories: alien life, computing, physics

Physicists have long struggled to explain why the Universe started out with conditions suitable for life to evolve. Why do the physical laws and constants take the very specific values that allow stars, planets, and ultimately life to develop?

The expansive force of the Universe, dark energy, for example, is much weaker than theory suggests it should be – allowing matter to clump together rather than being ripped apart.

A common answer is that we live in an infinite multiverse of Universes, so we shouldn’t be surprised that at least one Universe has turned out as ours. But another is that our Universe is a computer simulation, with someone (perhaps an advanced alien species) fine-tuning the conditions.

Nov 21, 2022

New puzzling discovery challenges Newton’s laws of gravity

Posted by in category: physics

An international team of astrophysicists has made a puzzling discovery while analyzing certain star clusters. The University of Bonn played a major role in the study. The finding challenges Newton’s laws of gravity, the researchers write in their publication. Instead, the observations are consistent with the predictions of an alternative theory of gravity. However, this is controversial among experts. The results have now been published in the Monthly Notices of the Royal Astronomical Society.

In their work, the researchers investigated the so-called open star clusters. These are formed when thousands of stars are born within a short time in a huge gas cloud. As they “ignite,” the galactic newcomers blow away the remnants of the gas cloud. In the process, the cluster expands considerably. This creates a loose formation of several dozen to several thousand stars. The weak gravitational forces acting between them hold the cluster together.

“In most cases, open star clusters survive only a few hundred million years before they dissolve,” explains Prof. Dr. Pavel Kroupa of the Helmholtz Institute of Radiation and Nuclear Physics at the University of Bonn. In the process, they regularly lose stars, which accumulate in two so-called “tidal tails.” One of these tails is pulled behind the cluster as it travels through space. The other, in contrast, takes the lead like a spearhead.

Nov 20, 2022

Simulations suggest GW190521 merger was the result of non-spinning black holes randomly finding each other

Posted by in categories: cosmology, physics

A team of researchers from Friedrich-Schiller-Universität Jena, Università di Torino and INFN sezione di Torino, has found evidence that the black hole collision that led to an odd gravitational wave detection in 2019 was due to a unique set of circumstances. In their paper published in the journal Nature Astronomy, the group describes modeling and simulating the conditions that could possibly lead to the unique gravitational wave signature.

The development of gravitational wave detectors has led to a better understanding of what happens when collide. In most instances, the data has shown, they occur due to exploding and then slowly spiraling toward one another until they meet at a gravitational center and merge.

But then, on May 21, 2019, were detected from two black holes merging, but the data showed that neither of the black holes appeared to be spinning and the duration of the signal was shorter than all the others that have been detected. The odd signal left astrophysicists scratching their heads. Now, in this new effort, the researchers believe they have come up with a plausible explanation for the observation.

Nov 20, 2022

Physics study shows that sheep flocks alternate their leader and achieve collective intelligence

Posted by in category: physics

The collective motion of animals in a group is a fascinating topic of research for many scientists. Understanding these collective behaviors can sometimes inspire the development of strategies for promoting positive social change, as well as technologies that emulate nature.

Many studies describe flocking behavior as a self-organized process, with individuals in a group continuously adapting their direction and speed to ultimately achieve a “collective” motion. This perspective, however, does not consider the exhibited by many and the possible benefits of having a “leader” guide the way.

Luis Gómez-Nava, Richard Bon and Fernando Peruani, three researchers at Université Côte d’Azur, Université de Toulouse, and CY Cergy Paris Université have recently used physics theory to examine the collective behavior of small flocks of sheep. Their findings, published in Nature Physics, show that by alternating between the role of leader and follower, the flock ultimately achieves some form of “.”

Nov 17, 2022

Mathematical models shed new light on the interior of neutron stars

Posted by in categories: cosmology, mathematics, physics

“Neutron stars apparently behave a bit like chocolate pralines”.

Neutron stars were first discovered more than 60 years ago, but very little is known about the interior of neutron stars, the incredibly compact cores of dead stars.

According to their findings, a press statement reveals, they bear a surprising resemblance to chocolate pralines.

Continue reading “Mathematical models shed new light on the interior of neutron stars” »

Nov 16, 2022

Probing the Limits of Nuclear Existence

Posted by in categories: mapping, physics, space

Researchers have discovered the heaviest-known bound isotope of sodium and characterized other neutron-rich isotopes, offering important benchmarks for refining nuclear models.

The neutron dripline marks a boundary of nuclear existence—indicating isotopes of a given element with a maximum number of neutrons. Adding a neutron to a dripline isotope will cause the isotope to become unbound and release one or more of its neutrons. Mapping the dripline is a major goal of modern nuclear physics, as this boundary is a testing ground for nuclear models and has implications for our understanding of neutron stars and of the synthesis of elements in stellar explosions. Now studies by two groups extend our knowledge of the properties of nuclei close to the dripline [1, 2]. Working at the Radioactive Isotope Beam Factory (RIBF) in Japan, Deuk Soon Ahn of RIKEN and colleagues have discovered sodium-39 (39 Na), which likely marks the dripline location for the heaviest element to date (Fig. 1) [1].

Nov 16, 2022

Are there Undiscovered Elements Beyond The Periodic Table?

Posted by in categories: chemistry, physics, space

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Continue reading “Are there Undiscovered Elements Beyond The Periodic Table?” »

Nov 16, 2022

What if We Could Make Electronics From Mushrooms? | Mashable

Posted by in categories: physics, sustainability, wearables

From wearable gadgets to battery separators, the future of sustainable tech is starting to look like a mushroom. A team of researchers from the Institute of Experimental Physics in Linz have completed a proof-of-concept study, testing whether mycelium skin could substitute plastic in the production of soft electronics. The scientists used processed skin from the mushroom Ganoderma Lucidum – a saprophytic fungus native to some parts of Europe and China that grows naturally on dead hardwood.

This works by laying electronic components on the fungal skin through a process called physical vapor deposition, used to produce thin materials. The resulting electronic circuit has high thermal stability and can withstand thousands of bending cycles. The researchers say that combining conventional electronics with the biodegradable material could help reduce waste in the production of wearable electronics and sustainable battery separators, among other uses.

Continue reading “What if We Could Make Electronics From Mushrooms? | Mashable” »

Nov 15, 2022

Limitless nuclear fusion energy is one step closer thanks to burning plasma experiment

Posted by in categories: nuclear energy, physics

We could be a step closer to the commercially viable production of limitless nuclear fusion energy.

A group of nuclear fusion researchers at the National Ignition Facility (NIF) achieved self-heating “burning plasma” for the first time ever in January, bringing commercially viable nuclear fusion one step closer.

Now, a new analysis of the plasma, published in a paper in the journal Nature Physics, reveals surprising new details that could help the scientific community finally achieve the holy grail of nuclear fusion — net energy production.

Continue reading “Limitless nuclear fusion energy is one step closer thanks to burning plasma experiment” »

Page 62 of 267First5960616263646566Last