Toggle light / dark theme

17th Century Sunspot Drawings Could Help Solve 400-Year-Old Solar Cycle Mystery

“Kepler contributed many historical benchmarks in astronomy and physics in the 17th century, leaving his legacy even in the space age,” said Hisashi Hayakawa.


How can 400-year-old sunspot drawings help modern-day scientists with solar cycles? This is what a recent study published in The Astrophysical Journal Letters hopes to address as an international team of researchers used 400-year-old drawings of sunspots to better understand solar cycles and how we can study them in the future. This study holds the potential to help researchers use non-electronic scientific tools to gain greater insight into scientific discoveries around the world.

For the study, the researchers examined drawings of sunspots made by Johannes Kepler in 1,607 along with past notes to ascertain which solar cycle these sunspots belonged to, which could help astronomers piece together solar cycles during that time and predict them, as well.

Cosmic Simulation Reveals How Black Holes Grow and Evolve

A team of astrophysicists led by Caltech has managed for the first time to simulate the journey of primordial gas dating from the early universe to the stage at which it becomes swept up in a disk of material fueling a single supermassive black hole. The new computer simulation upends ideas about such disks that astronomers have held since the 1970s and paves the way for new discoveries about how black holes and galaxies grow and evolve.

“Our new simulation marks the culmination of several years of work from two large collaborations started here at Caltech,” says Phil Hopkins, the Ira S. Bowen Professor of Theoretical Astrophysics.

The first collaboration, nicknamed has focused on the larger scales in the universe, studying questions such as how galaxies form and what happens when galaxies collide. The other, dubbed STARFORGE, was designed to examine much smaller scales, including how stars form in individual clouds of gas.

Escaping kinetic traps: How molecular interactions make it possible to overcome the energy barrier

In a paper in Physical Review Letters scientists from the department Living Matter Physics at the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) propose a mechanism on how energy barriers in complex systems can be overcome. These findings can help to engineer molecular machines and to understand the self-organization of active matter.

Scientists resolves a long-debated anomaly in how nuclei spin

In previous research, measurements found that for fast rotations, for example in nuclei like neon-20 or chromium-48, the energy for spinning changes unexpectedly. Scientists attributed this to an anomalous increase in the moment of for fast rotations, likely due to the bulging out. Earlier models suggested that fast-rotating nuclei ultimately become spheres, but newer models have found deformed shapes. Now, large-scale simulations of have revealed surprising new explanations of the elusive physics of fast-spinning nuclei.

For the first time in nearly 50 years, scientists accurately calculated the moment of inertia and studied its hypothesized anomalous increase through state-of-the-art simulations of nuclei. The simulations for neon-20 replicate the energy measurements. Remarkably, however, the simulations do not find the anomalous increase. Instead, they reveal a change in the interior of the nucleus.

Similar microscopic simulations for chromium-48 confirm this surprising result. Furthermore, the results resolve the long-lasting question of whether a prolate nucleus that starts to quickly spin becomes spherical or oblate. This research, published in Physical Review C, shows that several competing shapes emerge, some prolate and some oblate, which on average appear spherical.

Physicists uncover key to resolving long-standing inertial confinement fusion hohlraum drive deficit

“Significant effort has been invested over the years to pinpoint the physical cause of the radiation drive-deficit problem,” Chen said. “We are excited about this discovery as it helps resolve a decade-long puzzle in ICF research. Our findings point the way to an improvement in the predictive capabilities of simulations, which is crucial for the success of future fusion experiments.”

In NIF experiments, scientists use a device called a hohlraum—approximately the size of a pencil eraser—to convert into X-rays, which then compress a fuel capsule to achieve fusion.

For years, there has been a problem where the predicted X-ray energy (drive) was higher than what was measured in experiments. This results in the time of peak neutron production, or “bangtime,” occurring roughly 400 picoseconds too early in simulations. This discrepancy is known as the “drive-deficit” because modelers had to artificially reduce the laser drive in the simulations to match observed bangtime.

Reality or Simulation? Simulation Argument by Nick Bostrom

Nick bostroms simulation argument.


Have you ever paused, looked around, and wondered if everything you see, feel, and experience is real? Or could it be that we’re living in a sophisticated simulation, indistinguishable from reality?

This thought isn’t just a plot from a sci-fi movie; it’s a serious philosophical argument proposed by Nick Bostrom, known as the Simulation Argument. If you’ve ever questioned the nature of reality or pondered over the mysteries of existence, this exploration is for you.

Nick Bostrom, a prominent figure in the realm of philosophical and technological inquiry, has significantly contributed to the discourse on existential risks and the future of humanity. With a background that spans physics, computational neuroscience, and philosophy, Bostrom has established himself as a leading thinker in assessing the implications of emerging technologies. His work, which often explores the intersection of life, consciousness, and artificial intelligence, has paved the way for a deeper understanding of the potential futures humanity might face.