БЛОГ

Archive for the ‘physics’ category: Page 8

Oct 8, 2024

Near-Earth asteroid data help probe possible fifth force in universe

Posted by in categories: physics, space

In 2023, the NASA OSIRIS-REx mission returned a sample of dust and rocks collected on the near-Earth asteroid Bennu. In addition to the information about the universe gleaned from the sample itself, the data generated by OSIRIS-REx might also present an opportunity to probe new physics. As described in Communications Physics, an international research team led by Los Alamos National Laboratory used the asteroid’s tracking data to study the possible existence of a fifth fundamental force of the universe.

Oct 7, 2024

WATCH LIVE: The winner of the 2024 Nobel Prize in physics is … | PBS News

Posted by in category: physics

The recipient of the 2024 Nobel Prize in physics will be announced Tuesday, Oct. 8.

The winner will be announced no earlier than 5:30 a.m. EDT. Watch the event live in the player above.

Three researchers won the honor last year for making advances in the field of studying electrons. The prize went to French-Swedish physicist Anne L’Huillier, French scientist Pierre Agostini and Hungarian-born Ferenc Krausz, who used attosecond-long flashes of light to illuminate molecules and provide brief glimpses of how fast-moving electrons travel.

Oct 6, 2024

Magnetic Field Maps of the Sun’s Corona

Posted by in categories: energy, mapping, physics, space

The U.S. National Science Foundation (NSF) Daniel K. Inouye Solar Telescope, the world’s most powerful solar telescope, designed, built, and operated by the NSF National Solar Observatory (NSO), achieved a major breakthrough in solar physics by directly mapping the strength of the magnetic field in the solar corona, the outer part of the solar atmosphere that can be seen during a total eclipse. This breakthrough promises to enhance our understanding of space weather and its impact on Earth’s technology-dependent society.

The corona: the launch pad of space weather.

The Sun’s magnetic field generates regions in the Sun’s atmosphere, often rooted by sunspots, that store vast amounts of energy that fuel explosive solar storms and drive space weather. The corona, the Sun’s outer atmosphere, is a superheated realm where these magnetic mysteries unfold. Mapping coronal magnetic fields is essential to understanding and predicting space weather — and to protect our technology in Earth and space.

Oct 5, 2024

Numerical simulation of deformable droplets in three-dimensional, complex-shaped microchannels

Posted by in categories: computing, information science, physics

The physics of drop motion in microchannels is fundamental to provide insights when designing applications of drop-based microfluidics. In this paper, we develop a boundary-integral method to simulate the motion of drops in microchannels of finite depth with flat walls and fixed depth but otherwise arbitrary geometries. To reduce computational time, we use a moving frame that follows the droplet throughout its motion. We provide a full description of the method, including our channel-meshing algorithm, which is a combination of Monte Carlo techniques and Delaunay triangulation, and compare our results to infinite-depth simulations. For regular geometries of uniform cross section, the infinite-depth limit is approached slowly with increasing depth, though we show much faster convergence by scaling with maximum vs average velocities. For non-regular channel geometries, features such as different branch heights can affect drop partitioning, breaking the symmetric behavior usually observed in regular geometries. Moreover, non-regular geometries also present challenges when comparing the results for deep and infinite-depth channels. To probe inertial effects on drop motion, the full Navier–Stokes equations are first solved for the entire channel, and the tabulated solution is then used as a boundary condition at the moving-frame surface for the Stokes flow inside the moving frame. For moderate Reynolds numbers up to Re = 5, inertial effects on the undisturbed flow are small even for more complex geometries, suggesting that inertial contributions in this range are likely small. This work provides an important tool for the design and analysis of three-dimensional droplet-based microfluidic devices.

Oct 5, 2024

Scientists achieve unprecedented control of active matter

Posted by in categories: innovation, physics

An international research team led by Brandeis University has achieved a major breakthrough in the field of active matter physics, as detailed in a study published this week in Physical Review X. This pioneering research offers the first experimental validation of a key theoretical prediction about 3D active nematic liquid crystals by trapping them within cell-sized spherical droplets.

Oct 5, 2024

Niobium-tin magnet could be key to unlocking potential of heavy-ion accelerator

Posted by in category: physics

Researchers from Berkeley Lab’s Accelerator Technology & Applied Physics (ATAP) Division have teamed up with colleagues from Michigan State University’s Facility for Rare Isotope Beams (FRIB), the world’s most powerful heavy-ion accelerator, to develop a new superconducting magnet based on niobium-tin (Nb3Sn) technology.

Oct 3, 2024

Opinion: Why we must keep investigating physics’ most tantalizing theory —

Posted by in category: physics

Even without experimental results.

Oct 2, 2024

Rotating cylinder amplifies electromagnetic fields

Posted by in categories: energy, physics

Physicists have observed the Zel’dovich effect in an electromagnetic system – something that was thought to be incredibly difficult to do until now. This observation, in a simplified induction generator, suggests that the effect could in fact be quite fundamental in nature.

In 1971, the Russian physicist Yakov Zel’dovich predicted that electromagnetic waves scattered by a rotating metallic cylinder should be amplified by gaining mechanical rotational energy from the cylinder. The effect, explains Marion Cromb of the University of Southampton, works as follows: waves with angular momentum – or twist – that would usually be absorbed by an object, instead become amplified by that object. However, this amplification only occurs if a specific condition is met: namely, that the object is rotating at an angular velocity that’s higher than the frequency of the incoming waves divided by the wave angular momentum number. In this specific electromagnetic experiment, this number was 1, due to spin angular momentum, but it can be larger.

\r \r

Oct 1, 2024

Looking back at President Jimmy Carter’s science policy

Posted by in categories: chemistry, education, energy, mathematics, physics, policy, science

As President, Jimmy Carter established several science-related initiatives and policies.


Carter also sought to promote scientific research and development in a number of areas. He increased funding for basic science research in fields such as physics and chemistry, and established the National Commission on Excellence in Education to promote improvements in science and math education in American schools.

Continue reading “Looking back at President Jimmy Carter’s science policy” »

Oct 1, 2024

Revisiting the Moon’s Origin: A New Capture Theory

Posted by in categories: physics, space

“No one knows how the moon was formed,” said Dr. Darren Williams. “For the last four decades, we have had one possibility for how it got there. Now, we have two. This opens a treasure trove of new questions and opportunities for further study.”


How did the Moon form? Was it from a collision, as has been the longstanding theory, or could it have been captured by the Earth early in our planet’s formation? This is what a recent study published in The Planetary Science Journal hopes to address as two researchers from Penn State investigated a new model for how our Moon came to reside within its present orbit around the Earth. This study holds the potential to help researchers better understand the origin of our Moon, which could help explain how some moons throughout our solar system came to be orbiting their respective planets, as well.

For the study, the researchers performed a series of calculations aimed at ascertaining if a simulated binary object could end up in the Moon’s orbit. The argument the researchers make is that if the Moon was formed from a collision, then it would orbit above the Earth’s equator. In contrast, the Moon’s orbit follows a different orbit.

Continue reading “Revisiting the Moon’s Origin: A New Capture Theory” »

Page 8 of 321First56789101112Last