Toggle light / dark theme

Sabine Hossenfelder investigates life’s big questions through the lens of physics, particularly Einstein’s theory of special relativity. She highlights the relativity of simultaneity, which states that the notion of “now” is subjective and dependent on the observer. This leads to the block universe concept, where past, present, and future all exist simultaneously, making the past just as real as the present.

Hossenfelder also emphasizes that the fundamental laws of nature preserve information rather than destroy it. Although information about a deceased person disperses, it remains an integral part of the universe. This idea of timeless existence, derived from the study of fundamental physics, offers profound spiritual insights that can be difficult to internalize in our everyday lives. As a result, Hossenfelder encourages people to trust the scientific method and accept the profound implications of these discoveries, which may reshape our understanding of life and existence.

As a physicist, Hossenfelder trusts the knowledge gained through the scientific method and acknowledges the challenge of integrating these deep insights into our daily experiences. By contemplating these profound concepts, we can potentially expand our understanding of reality and our place within it.

When two black holes collide, the impact is so big that we can detect it all the way here on Earth. These objects are so immense that their collisions send ripples through spacetime itself. Scientists call these ripples gravitational waves.

Gravitational waves are distortions or ripples in the fabric of space and time. They were first detected in 2015 by the Advanced LIGO detectors and are produced by catastrophic events such as colliding black holes, supernovae, or merging neutron stars.

‘Could the theory be wrong? Possibly. That is the point and the case for all theories,’ says Cronin. ‘But perhaps it is less wrong than our current understanding and it will help us understand the link between physics and biology through chemistry. We have to try and we think we are onto something.’

A Sharma et al, Nature., 2023, DOI: 10.1038/s41586-023–06600-9.

Scientists have observed the molecular motion of rubber components typically used in automobile tires—polybutadiene and carbon black—with the world’s fastest time resolution.

The study, published in Applied Physics Letters, reveals a clear interaction between the two components on the , paving the way towards improved diagnostics of tire rubber degradation and the development of materials with enhanced durability.

Tire rubber is a that typically includes , such as polybutadiene, and added nanoparticles, such as carbon black, to improve its . During driving, strong forces act on the tire, causing its components to move against each another, which can lead to wear and degradation of the material.

An international team of scientists, including from the University of Cambridge, have launched a new research collaboration that will leverage the same technology behind ChatGPT to build an AI-powered tool for scientific discovery.

While ChatGPT deals in words and sentences, the team’s AI will learn from numerical data and physics simulations from across scientific fields to aid scientists in modeling everything from supergiant stars to the Earth’s climate.

The team launched the initiative, called Polymathic AI earlier this week, alongside the publication of a series of related papers on the arXiv open access repository.

A new study reports conclusive evidence for the breakdown of standard gravity in the low acceleration limit from a verifiable analysis of the orbital motions of long-period, widely separated, binary stars, usually referred to as wide binaries in astronomy and astrophysics.

The study carried out by Kyu-Hyun Chae, professor of physics and astronomy at Sejong University in Seoul, used up to 26,500 wide binaries within 650 light years (LY) observed by European Space Agency’s Gaia space telescope. The study was published in the 1 August 2023 issue of the Astrophysical Journal.

For a key improvement over other studies Chae’s study focused on calculating gravitational accelerations experienced by binary stars as a function of their separation or, equivalently the orbital period, by a Monte Carlo deprojection of observed sky-projected motions to the three-dimensional space.

Dark energy, one of the most controversial physics ideas, is getting another challenge. After all, if this force is supposed to make up about 68% of the mass-energy of the universe, where exactly is it? A new paper by a pair of Russian astrophysicists says dark energy simply doesn’t exist. Instead, they point to the mysterious Casimir effect as the explanation for the accelerating expansion of the universe.

The study, from Professor Artyom Astashenok and undergraduate student Alexander Teplyakov of the Immanuel Kant Baltic Federal University, takes issue with the fact that as far as dark energy’s suggested role, “no one knows what is it and how it works,” as remarks Astashenok in a press release.

Some asteroids are dense. So dense in fact, that they may contain heavy elements outside of the periodic table, according to a new study on mass density.

The team of physicists from The University of Arizona say they were motivated by the possibility of Compact Ultradense Objects (CUDOs) with a mass density greater than Osmium, the densest naturally occurring, stable element, with its 76 protons.

“In particular, some observed asteroids surpass this mass density threshold. Especially noteworthy is the asteroid 33 Polyhymnia,” the team writes in their study, adding that “since the mass density of asteroid 33 Polyhymnia is far greater than the maximum mass density of familiar atomic matter, it can be classified as a CUDO with an unknown composition.”