Toggle light / dark theme

Gravitational waves and the inflation of certainty

A team of scientists, astrophysicists and physicists, in an experiment called BICEP2 (Background Imaging of Cosmic Extragalactic Polarisation 2), carried out over nine years at an astronomical observatory at the South Pole, reported that they had discovered undeniable traces of a much sought-after phenomenon in astrophysics: gravitational waves. It was also announced that the method used to make the discovery had provided an important confirmation of the theoretical model of Big Bang cosmology, and would allow the first moments after this primordial explosion—the moment of creation for modern astrophysics—to be studied experimentally.

When you don’t find gravitational waves…

If we imagine space and time as the surface of an ocean, gravitational waves can be thought of as ripples in that ocean. More precisely, gravitational waves are theoretical ripples in space-time, first predicted by Albert Einstein in 1916 on the basis of his general theory of relativity. Like electromagnetic waves, which are produced by the oscillation of an electric charge, it is thought that a sufficiently strong oscillation of a very massive object should produce gravitational waves, which carry energy in the form of gravitational energy.

Venus Unveiled: The Mystery of Water Loss Revealed

“Water is really important for life,” said Dr. Eryn Cangi. “We need to understand the conditions that support liquid water in the universe, and that may have produced the very dry state of Venus today.”


How did the planet Venus lose its water? This debate has rage on for some time and something a recent study published in Nature hopes to address as a team of researchers from the University of Colorado Boulder (UCB) and the University of Arizona (UoA) as they have potentially conducted a groundbreaking study that could help explain the processes responsible for making Venus the hellish world it is today, whereas scientists have long hypothesized that the second planet from the Sun was much more hospitable billions of years ago.

“Water is really important for life,” said Dr. Eryn Cangi, who is a research scientist at the Laboratory for Atmospheric and Space Physics (LASP) at UCB and a co-author of the study. “We need to understand the conditions that support liquid water in the universe, and that may have produced the very dry state of Venus today.”

For the study, the researchers used a series of computer models to challenge previous studies regarding the mechanisms and speed that Venus lost its water. In the end, the team attributed Venus’ water loss to a process called “dissociative recombination”, which occurs when molecules are broken down and other molecules form as a result. While this process does not naturally occur on Earth and has been found difficult to replicate in the lab, it is a fundamental process in space physics and understanding how the rest of universe works.

Deep space collision 650 million light-years away sends gravitational-wave signal

Astronomers have picked up a gravitational-wave signal originating from a dramatic collision deep in the cosmos. The event, dubbed GW230529, was recorded by the LIGO Livingston detector in May 2023.

Gravitational waves are caused by the acceleration of massive objects, such as merging black holes or neutron stars. According to Albert Einstein’s theory of general relativity, massive objects like planets, stars, and black holes distort the fabric of spacetime around them.

When these massive objects accelerate or change speed, they create waves that propagate outward at the speed of light. The detection of gravitational waves opens up a new window for observing the universe, allowing scientists to study phenomena that were previously inaccessible, such as the mergers of black holes and neutron stars, as well as the nature of gravity itself.

Physicists Say They May Have Found a Powerful Glitch in the Universe

Researchers have discovered what they’re calling a “cosmic glitch” in gravity, which could potentially help explain the universe’s strange behavior on a cosmic scale.

As detailed in a new paper published in the Journal of Cosmology and Astroparticle Physics, the team from the University of Waterloo and the University of British Columbia in Canada posit that Albert Einstein’s theory of general relativity may not be sufficient to explain the accelerating expansion of the universe.

Einstein’s “model of gravity has been essential for everything from theorizing the Big Bang to photographing black holes,” said lead author and Waterloo mathematical physics graduate Robin Wen in a statement about the research. “But when we try to understand gravity on a cosmic scale, at the scale of galaxy clusters and beyond, we encounter apparent inconsistencies with the predictions of general relativity.”

Astrophysicists Solve Mystery of Heart-Shaped Feature on the Surface of Pluto

The mystery of how Pluto got a giant heart-shaped feature on its surface has finally been solved by an international team of astrophysicists led by the University of Bern and members of the National Center of Competence in Research (NCCR) PlanetS. The team is the first to successfully reproduce the unusual shape with numerical simulations, attributing it to a giant and slow oblique-angle impact.

Ever since the cameras of NASA’s New Horizons mission discovered a large heart-shaped structure on the surface of the dwarf planet Pluto in 2015, this “heart” has puzzled scientists because of its unique shape, geological composition, and elevation. A team of scientists from the University of Bern, including several members of the NCCR PlanetS, and the University of Arizona in Tucson have used numerical simulations to investigate the origins of Sputnik Planitia, the western teardrop-shaped part of Plutos heart surface feature.

According to their research, Pluto’s early history was marked by a cataclysmic event that formed Sputnik Planitia: a collision with a planetary body about 700 km in diameter, roughly twice the size of Switzerland from east to west. The team’s findings, which were recently published in Nature Astronomy, also suggest that the inner structure of Pluto is different from what was previously assumed, indicating that there is no subsurface ocean.

Unlocking High Energy: New Aqueous Batteries Surpass Traditional Limits

Traditional lithium-ion batteries, while offering high energy density, have compromised safety because they use flammable organic electrolytes.

Aqueous batteries use water as the solvent for electrolytes, significantly enhancing the safety of the batteries. However, due to the limited solubility of the electrolyte and low battery voltage, aqueous batteries typically have a lower energy density. This means that the amount of electricity stored per unit volume of aqueous battery is relatively low.

In a new study published in Nature Energy, a research group led by Prof. Li Xianfeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Prof. Fu Qiang’s group also from DICP, developed a multi-electron transfer cathode based on bromine and iodine, realizing a specific capacity of more than 840 Ah/L, and achieving an energy density of up to 1,200 Wh/L based on catholyte in full battery testing.

‘Cosmic glitch’ discovered in gravity’s behavior challenges Einstein’s general relativity theory

Researchers have stumbled upon a phenomenon that could rewrite our understanding of the universe’s gravitational forces. Known as the “cosmic glitch,” this discovery highlights anomalies in gravity’s behavior on an immense scale, challenging the established norms set by Albert Einstein’s theory of general relativity.

For over a century, general relativity has served as the backbone for our understanding of cosmic phenomena, ranging from the dynamics of the Big Bang to the intricacies of black holes. The theory posits that gravity influences not only the three spatial dimensions but also time itself.

Validated through numerous tests and observations, general relativity has been a robust model that physicists and astronomers worldwide rely on.

China touts ‘water battery’ with more energy capacity than lithium cells: study

Their findings “may expand aqueous battery applications in the power battery field”, said corresponding author Li Xianfeng, a professor at the CAS Dalian Institute of Chemical Physics, who was quoted in a statement from the academy.

Lithium batteries are the standard used across the world because of their high energy density. Traditional lithium batteries contained a non-aqueous electrolyte – a component that allowed the battery to charge and discharge – which was flammable, the paper said.

Aqueous batteries are made up of a water-based electrolyte which does not present the same safety risks.

Einstein Challenged: Exploring the “Cosmic Glitch” in Gravity

Moving one step closer to understanding mysteries at the edge of the universe.

A group of researchers at the University of Waterloo and the University of British Columbia have discovered a potential “cosmic glitch” in the universe’s gravity, explaining its strange behavior on a cosmic scale.

For the last 100 years, physicists have relied upon Albert Einstein’s theory of “general relativity” to explain how gravity works throughout the universe. General relativity, proven accurate by countless tests and observations, suggests that gravity impacts not simply three physical dimensions but also a fourth dimension: time.

Physicists create an optical tweezer array of individual polyatomic molecules for the first time

A team of physicists at Harvard University has succeeded in trapping individual polyatomic molecules in optical tweezer arrays for the first time. In their paper published in the journal Nature, the group describes how they achieved their feat and the possible uses for it. A Research Briefing also describes their work in the same journal issue.