Quantum materials just made light do the “impossible”, unlocking hidden terahertz waves that could transform future technology.
MIT researchers uncovered clear evidence of unconventional superconductivity in magic-angle twisted trilayer graphene.
Their new measurement system revealed a sharp, V-shaped superconducting gap — proof of a new pairing mechanism unlike that in traditional superconductors. This breakthrough sheds light on quantum behaviors in ultra-thin materials and could accelerate the quest for room-temperature superconductivity.
Superconductors: Nature’s Perfect Conductors.
Many quantum researchers are working toward building technologies that allow for the existence of a global quantum internet, in which any two users on Earth would be able to conduct large-scale quantum computing and communicate securely with the help of quantum entanglement. Although this requires many more technological advancements, a team of researchers at Shanghai Jiao Tong University in China have managed to merge two independent networks, bringing the world a bit closer to realizing a quantum internet.
A true global quantum internet will require interconnectivity between many networks, and this has proven to be a much more difficult task for quantum networks than it is for classical networks. While researchers have demonstrated the ability to connect quantum computers within the same network, multi-user fusion remains a major challenge. Fully connected networks using dense wavelength division multiplexing (DWDM) have been achieved, but have scalability and complexity issues.
However, the research team involved in the new study, published in Nature Photonics, has merged two independent networks with 18 different users. All 18 users can communicate securely using entanglement-based protocols using this method. This represents the most complex multi-user quantum network to date.
Quantum satellites currently beam entangled particles of light from space down to different ground stations for ultra-secure communications. New research shows it is also possible to send these signals upward, from Earth to a satellite; something once thought unfeasible.
This breakthrough overcomes significant barriers to current quantum satellite communications. Ground station transmitters can access more power, are easier to maintain and could generate far stronger signals, enabling future quantum computer networks using satellite relays.
The study, “Quantum entanglement distribution via uplink satellite channels”, by Professor Simon Devitt, Professor Alexander Solntsev and a research team from the University of Technology Sydney (UTS), is published in the journal Physical Review Research.
In a breakthrough that reshapes our understanding of quantum materials, an international team of physicists has finally solved a decades-old mystery about how certain materials suddenly lose their ability to conduct electricity. The answer lies in an elusive quantum phenomenon known as a polaron — a quasiparticle formed when an electron becomes tightly coupled to the vibrations of the surrounding crystal lattice. This subtle “dance” between electrons and atoms can transform a good conductor into a perfect insulator.
The discovery, made by researchers from Kiel University and the DESY research center in Germany, including Professor Kai Rossnagel and Dr. Chul-Hee Min, provides the first direct evidence of polarons in a rare-earth compound composed of thulium, selenium, and tellurium (TmSe1–x Tex). Their findings, published in Physical Review Letters, illuminate one of quantum physics’ most puzzling phenomena: how subtle atomic vibrations can “kill” electrical conductivity.
A question that has vexed physicists for the past century may finally have a solution – but perhaps not the one everyone was hoping for.
In a new, detailed breakdown of current theory, a team of physicists led by Mir Faizal of the University of British Columbia has shown that there is no universal “Theory of Everything” that neatly reconciles general relativity with quantum mechanics – at least, not an algorithmic one.
A natural consequence of this is that the Universe can’t be a simulation, since any such simulations would have to operate algorithmically.