Toggle light / dark theme

“Disembodied Brains: Understanding our Intuitions on Human-Animal Neuro-Chimeras and Human Brain Organoids” by John H. Evans Book Link: https://amzn.to/40SSifF “Introduction to Organoid Intelligence: Lecture Notes on Computer Science” by Daniel Szelogowski Book Link: https://amzn.to/3Eqzf4C “The Emerging Field of Human Neural Organoids, Transplants, and Chimeras: Science, Ethics, and Governance” by The National Academy of Sciences, Engineering and Medicine Book Link: https://amzn.to/4hLR1Oe (Affiliate links: If you use these links to buy something, I may earn a commission at no extra cost to you.) Playlist: • Two AI’s Discuss: The Quantum Physics… The hosts explore the ethical and scientific implications of brain organoids and synthetic biological intelligence (SBI). Several sources discuss the potential for consciousness and sentience in these systems, prompting debate on their moral status and the need for ethical guidelines in research. A key focus is determining at what point, if any, brain organoids or SBI merit moral consideration similar to that afforded to humans or animals, influencing research limitations and regulations. The texts also examine the use of brain organoids as a replacement for animal testing in research, highlighting the potential benefits and challenges of this approach. Finally, the development of “Organoid Intelligence” (OI), combining organoids with AI, is presented as a promising but ethically complex frontier in biocomputing. Our sources discuss several types of brain organoids, which are 3D tissue cultures derived from human pluripotent stem cells (hPSCs) that self-organize to model features of the developing human brain. Here’s a brief overview: • Cerebral Organoids: This term is often used interchangeably with “brain organoids”. They are designed to model the human neocortex and can exhibit complex brain activity. These organoids can replicate the development of the brain in-vitro up to the mid-fetal period. • Cortical Organoids: These are a type of brain organoid specifically intended to model the human neocortex. They are formed of a single type of tissue and represent one important brain region. They have been shown to develop nerve tracts with functional output. • Whole-brain Organoids: These organoids are not developed with a specific focus, like the forebrain or cerebellum. They show electrical activity very similar to that of preterm infant brains. • Region-specific Organoids: These are designed to model specific regions of the brain such as the forebrain, midbrain, or hypothalamus. For example, midbrain-specific organoids can contain functional dopaminergic and neuromelanin-producing neurons. • Optic Vesicle-containing Brain Organoids (OVB-organoids): These organoids develop bilateral optic vesicles, which are light sensitive, and contain cellular components of a developing optic vesicle, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. • Brain Assembloids: These are created when organoids from different parts of the brain are placed next to each other, forming links. • Brainspheres/Cortical Spheroids: These are simpler models that primarily resemble the developing in-vivo human prenatal brain, and are particularly useful for studying the cortex. Unlike brain organoids, they do not typically represent multiple brain regions. • Mini-brains: This term has been debunked in favor of the more accurate “brain organoid”. These various types of brain organoids offer diverse models for studying brain development, function, and disease. Researchers are also working to improve these models by incorporating features like vascularization and sensory input. #BrainOrganoids #organoid #Bioethics #OrganoidIntelligence #WetwareComputing #Sentience #ArtificialConsciousness #Neuroethics #AI #Biocomputing #NeuralNetworks #ConsciousnessResearch #PrecautionaryPrinciple #AnimalTestingAlternatives #ResearchEthics #EmergingTechnology #skeptic #podcast #synopsis #books #bookreview #ai #artificialintelligence #booktube #aigenerated #documentary #alternativeviews #aideepdive #science #hiddenhistory #futurism #videoessay #ethics

Over the past decades, researchers have been trying to develop increasingly advanced and powerful quantum computers, which could outperform classical computers on some tasks. To attain this, they have been trying to identify new ways to store and manipulate qubits, which are the fundamental units of information in quantum computing systems.

So far, most studies have developed that store qubits using superconducting materials, trapped ions, and the spin of electrons confined in quantum dots (i.e., tiny semiconductor-based structures).

Another promising and yet so far rarely explored platform for the storage and manipulation of qubits relies on polar polyatomic molecules, which are molecules with more than two atoms and an uneven distribution of electric charge.

A new class of semiconductors that can store information in electric fields could enable computers that run on less power, sensors with quantum precision, and the conversion of signals between electrical, optical and acoustic forms—but how they maintained two opposite electric polarizations in the same material was a mystery.

Researchers from ICMAB are revolutionizing how we manipulate light at the nanoscale using chiral plasmonic structures—nanomaterials designed to interact with polarized light in extraordinary ways.

ICMAB researchers from the NANOPTO group at ICMAB have recently published two studies demonstrating how cost-effective fabrication techniques can produce highly efficient chiral nanostructures with potential applications in sensors, imaging, and even quantum technologies.

The first study, published in Nature Communications, showcases self-assembled chiral plasmonic architectures (triskelion patterns) made from gold and silver nanoparticles. These structures demonstrate exceptional optical responses, selectively interacting with circularly polarized light, opening up exciting possibilities for advanced optoelectronic devices.

Learn data science using real world examples on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

We still don’t know what “consciousness” actually means. But in a new study, researchers have used the equations of quantum mechanics to determine a brain’s “criticality,” a measure which allows them to separate waking brains from sleeping ones. I think they’re onto something. Let’s take a look.

Paper: https://journals.aps.org/pre/abstract… Check out my new quiz app ➜ http://quizwithit.com/ 💌 Support me on Donorbox ➜ https://donorbox.org/swtg 📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/ 👉 Transcript with links to references on Patreon ➜ / sabine 📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… 👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 🖼️ On instagram ➜ / sciencewtg #science #sciencenews #consciousness.

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #consciousness

Supported by the U.S. National Science Foundation, physicists have revealed the presence of a previously unobserved type of subatomic phenomenon called a fractional exciton. Their findings confirm theoretical predictions of a quasiparticle with unique quantum properties that behaves as though it is made of equal fractions of opposite electric charges bound together by mutual attraction.

The discovery was supported by NSF through multiple grants and laboratory work performed at the NSF National High Magnetic Field Laboratory in Tallahassee, Florida. The results are published in Nature and show potential for developing new ways to improve how information is stored and manipulated at the quantum level, which could lead to faster and more reliable quantum computers.

“Our findings point toward an entirely new class of quantum particles that carry no overall charge but follow unique quantum statistics,” says Jia Li, leader of the research team and associate professor of physics at Brown University. “The most exciting part is that this discovery unlocks a range of novel quantum phases of matter, presenting a new frontier for future research, deepening our understanding of fundamental physics and even opening up new possibilities in quantum computation.”

Physicists at Harvard have developed a powerful new laser-on-a-chip that emits bright pulses in the mid-infrared spectrum – an elusive and highly useful light range for detecting gases and enabling new spectroscopic tools.

The device, which packs capabilities of much larger systems into a tiny chip, doesn’t need any external components. It merges breakthrough photonic design with quantum cascade laser tech and could soon revolutionize environmental monitoring and medical diagnostics by detecting thousands of light frequencies in one go.

Breakthrough in compact mid-infrared laser technology.

A powerful framework allows scientists to understand and classify joint quantum measurements—procedures essential for many quantum technologies.

Two key, yet enigmatic, aspects of quantum physics are entanglement and the act of measuring a quantum system. These elements combine in unique ways in so-called joint measurements, where multiple systems are simultaneously measured in a way that accounts for their entanglement. Joint measurements are valuable because they can extract hidden information about the combined state of the systems. Remarkably, the outcome of a joint measurement can be replicated even if the systems are kept far apart, which has many practical benefits. Such “localization” procedures require local operations to be performed on each system and some extra entanglement to be shared beforehand. Now Jef Pauwels and colleagues at the University of Geneva have investigated how much of this shared entanglement is needed to localize a given joint measurement [1].

CERN scientists have detected top quark pairs in lead-lead collisions for the first time, confirming their presence in the early universe’s quark-gluon plasma. This groundbreaking discovery unlocks new insights into how matter formed just microseconds after the Big Bang. Join us as we explore the science, history, and future implications of this monumental finding.

Paper link : https://arxiv.org/pdf/2411.10186
paper link : https://arxiv.org/pdf/0810.5529
paper link : https://arxiv.org/pdf/2005.

Visit our website for up-to-the-minute updates:
www.nasaspacenews.com.

Follow us.
Facebook: https://www.facebook.com/nasaspacenews.
Twitter: https://twitter.com/SpacenewsNasa.

Join this channel to get access to these perks:
https://www.youtube.com/channel/UCEuhsgmcQRbtfiz8KMfYwIQ/join.

#NSN #NASA #Astronomy#TopQuark.